
Layer Activation Mechanism for Asynchronous Executions in
JavaScript

Hiroaki Fukuda
hiroaki@shibaura-it.ac.jp

Shibaura Institute of Technology
Toyosu, Tokyo, Japan

Paul Leger
pleger@ucn.cl

Universidad Católica del Norte
Coquimbo, Chile

Nicolás Cardozo
n.cardozo@uniandes.edu.co

Universidad de los Andes, Bogotá,
Colombia

ABSTRACT
In modern software development with JavaScript, an asynchronous
execution model is often adopted to prevent freezing execution
triggered by the blocking operations. JavaScript is now used in
various types of applications for the Web, smartphones, and server-
side due to its rich ecosystem. In such applications, programmers
implement several concerns that should perform different behav-
ior according to the current identified context. Context-Oriented
Programming (COP) posits layers as an abstraction to manage such
concerns. With COP, programmers can implement context depen-
dent application behavior in a layer, then (de)activate such layers
when the context changes, leading to a change in the system be-
havior. Additionally, COP offers different scoping strategies which
define when and how layers should be (de)activated. The dynamic
extent of layers is one of such scoping strategies, which encapsu-
lates the duration of a layer within a block, then deactivates the
layer when the block execution ends. However, applying an asyn-
chronous execution model breaks the semantics of dynamic extent
because the result of an asynchronous execution generally returns
when the caller of the asynchronous execution goes through the
block. Existing work proposes a variant of the dynamic extent that
activates a layer for a block and its logically-connected asynchro-
nous operations by keeping information across them. However,
that proposal only supports one of three kinds of asynchronous
operations used in JavaScript (MacroTask, EventTask, and Micro-
Task). This paper extends on the existing work to support a layer
activation mechanism with a scoping strategy that fulfills all three
kinds of asynchronous operations in JavaScript. We show the ben-
efit of our proposal through the implementation of a real world
application for smartphones.

CCS CONCEPTS
• Software and its engineering → Software system models;
Software design engineering.

KEYWORDS
Context-Oriented Programming, asynchronous execution, JavaScript

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
COP ’22, June 06–10, 2022, Berlin, Germany
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9986-9/22/06. . . $15.00
https://doi.org/10.1145/3570353.3570354

ACM Reference Format:
Hiroaki Fukuda, Paul Leger, and Nicolás Cardozo. 2022. Layer Activation
Mechanism for Asynchronous Executions in JavaScript. In COP ’22: Interna-
tional Workshop on Context-Oriented Programming and Advanced Modular-
ity, June 06–10, 2022, Berlin, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3570353.3570354

1 INTRODUCTION
Context-awareness is becoming ever more important due to the
rising variety of computing devices (e.g., tablets, smartphones),
and their execution environment conditions (e.g., location or users’
preferences). Context-oriented Programming (COP) [7] allows pro-
grammers to change software behavior at run time, in response to
an identified context [1]. COP allows programmers to define partial
methods [4, 7] to refine the behavior of the base system. These par-
tial methods can be grouped and encapsulated in a layer abstraction.
Additionally, COP provides mechanisms to activate and deactivate
layers when a context is identified. Several activation mechanisms
have been propose in COP, which can be imperative [7, 10, 19],
event-based [15], or implicit [14, 16, 23, 25]. One of the most fre-
quently used scoping strategies is dynamic extent [12]. Dynamic
extent limits the scope of activating layers within a block, mean-
ing that programmers do not need to (de)activate layers explicitly,
avoiding unexpected behavior due to leaking the active layers to
other parts of the system. COP features are usually provided as
library extensions of programming languages, as is, for example,
the case of ContextJS [20], a COP library for JavaScript.

In JavaScript, an asynchronous execution model is often adopted
to prevent freezing the execution of applications, given that this
execution model divides a sequence of operations into an asyn-
chronous operations and their corresponding callbacks to get the
result. For example, Web applications use asynchronous operations
to obtain necessary data without freezing users’ interactions with
browsers. We note the asynchronous execution model does not
directly fit to the semantics of dynamic extent scoping in COP, as
the result of asynchronous operations is postponed while the caller
thread goes through the block, leading to unexpected behavior. To
ensure modularity, the implementation of a concern with a context
should be executed inside the concern. However, the combination
of COP and an asynchronous execution model breaks this concept.
A previous proposal points out this problem and gives a solution for
MicroTasks using a concept called Zones [26]. Zones keep context
information across logically-connected asynchronous operations.

In this paper we propose a layer activation mechanism with a
scoping strategy called async dynamic extent for JavaScript (ADEjs),
as an extension of existing work [24], that fulfills the three kinds
of asynchronous operations in JavaScript, MicroTask, MacroTask,
and EventTask.

1

https://doi.org/10.1145/3570353.3570354
https://doi.org/10.1145/3570353.3570354
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570353.3570354&domain=pdf&date_stamp=2022-12-10

COP ’22, June 06–10, 2022, Berlin, Germany Fukuda et al.

To position our solution we first offer a background on COP
and the different kinds of asynchronous operations in JavaScript in
Section 2. Additionally, we describe the motivation for ADEjs. In de-
veloping our solution we explore two zone libraries for JavaScript,
building an API that observes all asynchronous operations and exe-
cutes postponed callbacks with the appropriate layers, following
the layer activation mechanisms implemented for ContextJS (Sec-
tion 3). The usefulness of ADEjs is illustrated through an example
implementation using multiple kinds of asynchronous operations
in combination of the zone libraries (Section 5). Section 6 presents
COP approaches related to our proposal, and finally, Section 7 closes
the paper with the conclusion and avenues of future work.

Availability. The proposal implementation is accesible at our
Github repository: https://github.com/kensan914/context-zone. The
examples presented used the revision aa28b4e.

2 COP AND ASYNCHRONOUS OPERATIONS
IN JAVASCRIPT

This section presents the COP paradigm and its activation and scop-
ing mechanisms, especially focusing on dynamic extent scoping for
layer activation. We then introduce the asynchronous operation
types in JavaScript, and point out the problems that may arise when
combining COP activation and scoping in asynchronous operations.

2.1 COP in a Nutshell
COP extends systems’ base cross-cutting behavior dynamically in
a modular manner. Programmers can use partial methods to refine
the behavior of the base system, where partial methods are grouped
and encapsulated in an abstraction called a layer.

1 class ButtonGroupManager {
2 show() {
3 / / base code
4 }
5 }
6

7 const LandscapeLayer = layer (" landscape ") ;
8 LandscapeLayer . refineClass (ButtonGroupManager , {
9 show() {

10 / / re f ine the behavior of show
11 }
12 }) ;
13

14 const buttonGroupManager = new ButtonGroupManager () ;
15 buttonGroupManager .show() ;

Listing 1: Using ContextJS for the smartphone application

Figure 1: Two different contexts in a smartphone application

Figure 1 shows a smartphone application working in two differ-
ent contexts (i.e., Portrait and Landscape). Listing 1 illustrates
the ContextJS code for the base behavior, and the partial meth-
ods extending the application in a layer. We define a class, named
ButtonGroupManager, as the main core module of the application.
This class contains the base method show (Lines 1-5). To define
context-based behavior, we create the LandscapeLayer layer, using
the layer function provided by ContextJS (Line 7). In the layer we
refine the ButtonGroupManager behavior by providing an alternative
definition of the show method. Finally, we create an instance of the
ButtonGroupManager class and invoke the base implementation of
show as LandscapeLayer is not active yet (Lines 14-15).

Layer activation mechanisms establish when a layer is activated.
There have been three main proposals for activating layers:

(1) imperative mechanisms activate layers explicitly using con-
structs such as with or activate,

(2) implicit mechanisms activate layers whenever a specified
condition is satisfied, and

(3) event-based mechanisms use event matching triggers.

1 withLayers ([LandscapeLayer] , function () {
2 buttonGroupManager .show() ; / / re f ine
3 }) ;
4 buttonGroupManager .show() ; / / base code

Listing 2: Dynamic extent in layer activations

Moreover, layers have effect within a given scope when acti-
vated. In the dynamic extent scoping mechanism, refined behavior
is available throughout the extend of the with context activation
blocks. ContextJS provides thewithLayers function that receives two
arguments, an array of layers to be activated, and a function that
is invoked with these layers active. For example, Listing 2 shows
that LandscapeLayer has effect over the behavior called in Line 2,
executing the refinement of the show method as LandscapeLayer be-
comes active in the withLayers function. In contrast, the call to show
in Line 4 corresponds to the base code because the withLayers block
is no longer in scope, deactivating the layer LandscapeLayer. Using
dynamic extent, programmers can activate layers only within a
block’s scope, avoiding leaking behavior adaptations throughout
other parts of the program.

2.2 Asynchronous Operations in JavaScript
In modern JavaScript system development, programmers often use
asynchronous operations. Suppose we use synchronous operations
for the development of user interfaces with JavaScript. When we
invoke a synchronous operation to send a message to a Web server,
the Web browser stops the execution, including rendering the user
interface until the response is received because JavaScript does not
support multi-threading. To prevent such situations, programmers
use asynchronous operations with current JavaScript libraries that
enable programmers to write asynchronous operations such as
Promise [21], async/await, or Sync/cc [17, 18]. In this paper, we call
operations executed in callbacks as async tasks, which includes
event handlers such as functions that handle click events dispatched
from a button component. Async tasks in JavaScript can be divided

2

h

Layer Activation Mechanism for Asynchronous Executions in JavaScript COP ’22, June 06–10, 2022, Berlin, Germany

into three categories: MicroTask, EventTask, and MacroTask [?]. We
briefly explain these categories.
MicroTask. MicroTasks are executed only once, after the corre-
sponding asynchronous operation is invoked, and cannot be can-
celed. In the following code snippet, an anonymous function passed
to the function onreadystatechange corresponds to aMicroTask, which
will be invoked when the corresponding asynchronous operation
finishes (e.g., send finishes).

l e t req = new XMLHttpRequest () ;
req . open(GET, " https : / / aaa .com/ " , true) ;
req . onreadystatechange = function (e) {

/ / handle asynchronous callback
}
req . send () ;

MacroTask. MacroTasks may be executed more than once and can
be canceled. These tasks delay time is decided when it is scheduled.
In the following, an anonymous function passed to setTimeout as a
first argument corresponds to the MacroTask. This task is invoked
every 100 milliseconds and can be canceled.

setTimeout (function () {
/ / handle timeout events
console . log (count) ;

} , 100) ;

EventTask. EventTasks are executed whenever an event happens,
such as a button click. These events occur at arbitrary times, so
they cannot be foreseen. In the following, an anonymous function
is passed to addEventListener, which corresponds to an EventTask.
This task can be removed by invoking the opposite method such as
removeEventListener.

button . addEventListener (" c l ick " ,function () {
/ / handle event

}) ;

2.3 COP Problems with Asynchronous Tasks
To illustrate the semantics mismatch between asynchronous ex-
ecution models and dynamic extent, we use COP to extend the
behavior of an EventTask for a Downloader as shown in Listing 3.
The Downloader class provides a download method that downloads
data from a specified URL. The Downloader also tries to download
the data three times whenever an error in the download occurs
(e.g., it cannot download the data for unstable network conditions).
The downloader generates a dlcomplete event when the download
is finally complete. We can delegate complicated download issues
in this class.

Suppose a given URL requires authentication, which is com-
monly achieved by adding the saved cookie to the URL. Listing 3
creates the authLayer and refines the download method to add cook-
ies (Line 4). In Listing 3, we need to get a set of confidential in-
formation (e.g., name and age) and display them sequentially for
a rich user interface using a single Downloader object for saving
resources. Thereby, we apply authLayer with the withLayers func-
tion (Line 10). Inside the function applied as a second argument
to the withLayers function, we access two different URLs reusing

the downloader object; therefore we expect that we can access both
with the authentication layer.

1 const authLayer = layer ("authLayer ") ;
2 authLayer . refineClass (DownLoader, {
3 download(url) {
4 addAuthenticateCookie () ;
5 return proceed () ;
6 }
7 }) ;
8

9 downloader = new Downloader () ;
10 withLayers ([authLayer] , function () {
11 downloader . addEventListener (" dlcomplete " , function (e) {
12 downloader . removeEventListener (" dlcomplete ") ;
13 / / show name
14 downloader . addEventListener (" dlcomplete " , function (e) {
15 downloader . removeEventListener (" dlcomplete ") ;
16 / / show age
17 }) ;
18 downloader . download(" https : / / yourinfo .com/?age") ;
19 }
20 downloader . download(" https : / / yourinfo .com/?name") ;
21 }) ;

Listing 3: A problem in COP with asynchronous program-
ming

In Listing 3, the second access (https://yourinfo.com?age) is ac-
cessed without the authentication due to the semantics of dynamic
extent adopted by withLayers. Even though scheduling the second
URL is written in the block scope of withLayer, it will be done out-
side the block due to the asynchronous behavior. The proposal
presented by Ramson et al. [24] solved this problem for MicroTask,
however, the problem of semantics mismatch for MacroTask and
EventTask still remains which is a motivation of our ADEjs.

3 CONTEXTJS AND ZONES
We propose a solution to solve the semantics mismatch between
asynchronous execution model and dynamic extent for the three
kinds of async tasks in JavaScript: MicroTask, MacroTask, and
EventTask. We extend ContextJS and introduce Zones [26] fol-
lowing the proposal of existing work [24]. Thereby this section
firstly describes how ContextJS dynamically (de)activates layers,
then, we briefly explain the concept of Zones.

3.1 Layer Activation Mechanism
ContextJS uses a stack, called LayerStack, tomanage the (de)activation
of layers. Figure 2 shows:

(1) code snippets nested with withLayers in ContextJS,
(2) the LayerStack and the way the method lookup in ContextJS

works, and
(3) the essential implementation of the withLayers function re-

spectively.
In Figure 2-(1), the Foo class contains a bar method, and two

layers, L1 and L2. We refine the Foo.barmethod with refineClass in L1.
Additionally, we use nested withLayers functions (applying L1 first,
and then L2), to invoke the Foo.bar method, showing the “refined”
message defined in L1.

3

COP ’22, June 06–10, 2022, Berlin, Germany Fukuda et al.

class Foo {

 bar() { console.log(”original”);

}

const L1 = layer(”L1”);

L1.refineClass(Foo, {

 bar() { console.log(”refined”); }

});

const L2 = layer(”L2”);

withLayers([L1], () => {

 withLayers[L2], () => {

 foo.bar(); // -> refined

 }

}

Base

L1

L2

LayerStack

lookup foo.bar

function withLayers(layers, func) {

 LayerStack.push(layers)

 try {

 return func();

 } finally {

 LayerStack.pop();

 }

}

Foo: bar(){..}

(1) (2) (3)

Figure 2: Layer activation in ContextJS

In ContextJS, as shown in Figure 2-(2), a base layer is always
pushed on to the LayerStack containing all base classes and methods.
A layer L is pushed on to the LayerStackwhen the withLayer function
is invoked with this L as a parameter. In our example, L1 and L2
are pushed following their definition of the nested withLayer, as
shown in Figure 2-(2). When we invoke a method (e.g., Foo.bar),
ContextJS starts looking up the method from the top layer on the
LayerStack. In this example, ContextJS first looks up the bar method
in L2. Since L2 does not contain a definition for bar, the lookup
request is forwarded to the next layer (i.e., L1), where it is defined.
Note that if no extensions are defined, ContextJS reverts to the base
definitions in the base layer. The order in which layers are pushed
into the stack follows the function in Figure 2-(3). Furthermore,
as we can see, after the execution of the func, we pop the layer,
reason why the execution of callbacks in asynchronous operations
are invoked without the required layer.

3.2 Zones
Zones are originally provided by the Dart language to keep infor-
mation across logically-connected asynchronous operations. Ad-
ditionally, zones control asynchronous behavior by observing and
intercepting the execution of async tasks.

1 runZoned (() {
2 print (Zone . current [#key]) ; / /−−> 499
3 Zone . current [#name] = Mike ;
4 button . addEventListener (" c l ick " ,function () {
5 console . log (Zone . current [#name]) ; / /−−> Mike
6 }) ;
7 } , zoneValues : { #key : 499 }) ;

Listing 4: Zones keep information across logically-connected
operations in Dart

Listing 4 shows how to keep information into logically-connected
asynchronous operations in a zone; a block containing any oper-
ations as a second argument of runZoned. Moreover, properties
attached to a zone persist regardless of whether the invoked be-
havior is synchronous or asynchronous. As shown in Listing 4,
runZoned creates a scope in which we can access the corresponding
properties from both synchronous and asynchronous operations
using Zone.current. For example, we set a value "Mike" with key

"#name" at Line 3, then at Line 5 we get the value "Mike" inside a call-
back. Zones also expose a variety of life-cycle callbacks for example
when entering a zone, leaving a zone or invoking an asynchronous
operation and a callback.

4 ADEJS: ASYNC DYNAMIC EXTENT FOR
JAVASCRIPT

This section presents ADEjs, our proposed solution to support
all kinds of asynchronous operations used in JavaScript. We start
presenting the crucial point of our proposal which is the storing
and restoring of layers, then describe two Zone libraries used to
create ADEjs. Finally, we present a concrete ADEjs implementation.

4.1 Store and Restore Layers
Based on the layer activation mechanism in ContextJS (Section 3.1),
the essential problem to solve in using dynamic extent scoping
and asynchronous operations is the way layers are pushed/popped
on/from to the LayerStack. For instance, using Listing 3, when the
first download is invoked for https://yourinfo.com/?name, authLayer
has been pushed on to the LayerStack (Line 20). When the second
download method is invoked, inside the callback in Line 18, the
authLayer is no longer on the LayerStack because of the asynchro-
nous behavior. Figure 3 shows ADEjs’ approach for the adequate
push/pop behavior for layers related to asynchronous operations to
(re)store layers on the LayerStack in Figure 2. In Figure 3, we describe
an asynchronous operation as async schedule, and its corresponding
callback as async callback. When a programmer invokes an asyn-
chronous operation, ADEjs keeps all layers on the stack, except the
Base. For example, Figure 3-(a) shows L1 and L2 in the stored stack.
When the corresponding callback is being invoked, ADEjs firstly
pops and stores the currently existing L3 on the LayerStack. Then
ADEjs temporary restores the stored L1 and L2 on the LayerStack
and stores L3. After handling the callback, ADEjs finally restores
the stored L3 on the LayerStack (Figure 3-(c)).

To carry out the layer storing/restoring strategy, ADEjs needs
to detect invocations of asynchronous operations and their corre-
sponding callbacks without explicit programmers’ support, leading
to the use of the Zone libraries.

4.2 Zone libraries
In JavaScript, we can find several libraries that provide Zones’ func-
tionality. This section reviews the two libraries used to build ADEjs.

Zone.js is part of the Angular framework and supports the
three kinds of async tasks. This library allows programmers
to expose the life-cycle of callbacks such as invoking an
asynchronous operation and its callback. Using life-cycles,
programmers can modify the behavior of a system on the
fly.

Dexie.Promise is awrapper for IndexedDB1 andDexie.Promise2

to include a zone-like utility. Dexie allows programmers
to write database transactions as a sequence of asynchro-
nous operations. Zones are used to keep track of transaction
scopes. Although Dexie.Promise only supports MicroTask, it

1https://www.w3.org/TR/IndexedDB/#idl-def-IDBEnvironment, accessed on Mar. 31th,
2022
2https://dexie.org/docs/Promise/Promise.PSD, accessed on Mar. 31th, 2022

4

Layer Activation Mechanism for Asynchronous Executions in JavaScript COP ’22, June 06–10, 2022, Berlin, Germany

Base
L1
L2

Base Base
L3

Base
L1
L2

store

async

schedule other tasks

restore

async

callback

Base
L3

L1
L2

L3

other tasks

(a) (b) (c)

restorestore

ContextJS

ADEjs

Figure 3: Storing and restoring layers before callbacks

can detect native async/await expressions. However, differ-
ent from Zone.js, it does not expose life-cycle of callbacks.

The reason to combine these libraries is twofold. On the one
hand, even though Zone.js claims that it supports all kinds of asyn-
chronous operations, it cannot detect the asynchronous operations
using async/await, which is categorized as a MicroTask. This means
that programmers cannot modify the behavior of a system that
uses async/await. On the other hand, Dexie.Promise only supports
MicroTask, meaning that this library cannot be used for MacroTasks
and EventTasks. Thereby we decide to use both libraries to fully
support the three kinds of JavaScript asynchronous operations.

4.3 Detecting Asynchronous Operation and
Callbacks

To detect the three kinds of asynchronous operations implicitly, we
use Zone.js and Dexie.Promise simultaneously. The following sec-
tions explain the process of detecting invocations of asynchronous
operations and their corresponding callbacks in detail.

4.3.1 MicroTask. To detect callbacks that are invoked for Micro-
Task, including native async/await, we provide a CustomPromise ob-
ject that is an extension of a Dexie.Promise Promise object. This is
because JavaScript provides async/await as syntactic sugar on top
of Promises.

1 const then = function (onFul l f i l led) {
2 / / temporary pop current layers and res tore stored layers
3 restoreLayers (. . .) ;
4 try {
5 return onFulfi l led (this , arguments) ;
6 } finally {
7 / / pop layers and res tore current layers
8 removeAndRestoreLayers (. . .) ;
9 }

10 }

Listing 5: then method in CustomPromise

Listing 5 shows the thenmethod, refined using the CustomPromise
object, which is an extension of a promise. The then method is
invoked when an asynchronous operation is completed, which
means that refining the then method can change the behavior of
a system. In Listing 5, onFullfilled represents a callback, therefore
we restore layers before invoking the callback (Line 3). We then
restore existing layers after invoking the callback (Line 8), which
is the same as the implementation using Zone.js. Finally, to apply

this CustomPromise to the JavaScript virtual machine, we replace
the Promise in a native window to this CustomPromise.

4.3.2 MacroTask/EventTask. We use Zone.js to detect asynchronous
operations and corresponding callbacks for MacroTask and Event-
Task. We show pseudo-code of this implementation using Zone.js
in Listing 6. The Zone.current function returns the reference of the
current zone running on the JavaScript virtual machine, and this
zone has a fork method to create a new zone. This fork method re-
ceives an object that follows a ZoneSpec interface in which callback
functions such as onFork, onScheduleTask, and onInvokeTask. We use
the following two callback functions:

onScheduleTask: This function is invoked just before an async
task is scheduled (i.e., before invoking an asynchronous op-
eration), so we can use this function to store existing layers
on the LayerStack.

onInvokeTask: This function is invoked just before a callback
is invoked. We use this function to restore the layers that
are used when the corresponding asynchronous operation
is invoked.

Zone objects provide a run method that receives a function to
execute operations such as loops, branches and invoking methods
in the zone.

1 const zone = Zone . currrent . fork ({
2 onScheduleTask : function (. . .) {
3 storeLayer () ; / / s tore layers
4 } ,
5 onInvokeTask : function (. . .) {
6 / / temporary pop current layers and res tore stored layers
7 restoreLayers (. . .) ;
8 / / execute a callback
9 invokeTask (. . .) ;

10 / / pop layers and res tore current layers
11 removeAndRestoreLayers (. . .) ;
12 } ,
13 }) ;
14

15 zone . run(function () {
16 / / execute any operations
17 }) ;

Listing 6: Store/Restore layers with Zone.js

Using Zone.js, we show the intuitive implementation of our pro-
posal in Listing 6. In this implementation, we create a new zone
with the forkmethod passing an object that implements the required
ZoneSpec interface (Line1). In the onScheduleTask function, we store

5

COP ’22, June 06–10, 2022, Berlin, Germany Fukuda et al.

all layers on LayerStack (Line 3). In the onInvokeTask method, which
is invoked before executing callbacks, we first restore the layers
stored in onScheduleTask after removing and storing the currently
existing layers on the LayerStack (Line 7), as for example L3 in Fig-
ure 3-(b). Second, we execute the callback invoking the invokeTask
method (Line 9). Finally, we remove stored layers (e.g., L1 and L2 in
Figure 3) from LayerStack and restore the existing layers (L3) (Line
11) to it. Note that, onInvokeTask will not be invoked when we use
native async/await expressions, which explains why we cannot use
Zone.js for MicroTasks.

4.3.3 Combine libraries. Using these two zone libraries and Con-
textJS, we show an extract of the implementation for our new
layer activation abstraction, withLayersZone. The withLayersZone
function consists of nested functions in which we store layers on
the LayerStack (Line 2 in Listing 7) before invoking the withLayers
function of ContextJS. Then, we apply aforementioned functions
using Zone.js and CustomPromise (Line 3-5). Finally, we invoke the
function that should be executed within a layer (Line 6).

1 const withLayersZone = function (layers , func) {
2 storeLayers () ; / / s tore layers on LayerStack
3 withLayers (layers , function () { / / provided by ContextJS
4 macroEventZone . run(function () { / / using Zone . j s
5 microTaskZone(function () { / / using CustomPromise
6 func . ca l l () ;
7 }) ;
8 }) ;
9 }) ;

10 }

Listing 7: Implementation of withLayersZone

Note that, we modify the implementation of Listing 6 at two
points to prevent multiple stores of layers and invoking callbacks
for MicroTask due to the combination of Zone.js and CustomPromise:

(1) we omit storeLayer in Line 2 of Listing 6 becausewithLayersZone
stores layers already in Line 2 of Listing 7, and

(2) we do not execute Lines 7 trough 11 of Listing 6 when tasks
belong to MicroTask because we delegate this case to the
CustomPromise inmicroTaskZone (Line 5 of Listing 7) as shown
in the following code snippets.

onInvokeTask : function (. . . , task , . . .) {
if (task . type != "microTask") { . . . }

}

With our proposedwithLayersZone, we can use all operation types
(i.e., synchronous or asynchronous) with active layer blocks, as
shown in Listing 8.

withLayersZone ([authlayer] ,function () {
/ / write synchronous and asynchronous operations
. . .

}) ;

Listing 8: Usage of withLayersZone

4.3.4 Summary. In the implementation of ADEjs, we use Zones
to keep layers across logically-connected asynchronous operations
and their corresponding callbacks, which are implicitly detected
by using zone libraries. A zone is created when an asynchronous
operation is invoked at runtime, storing all information related to
layers and callbacks, which leads to the correct execution of context
and base behavior under all possible situations.

5 VALIDATION
To check the feasibility of ADEjs and its implementation, we de-
velop a smartphone application called QiitaClient that uses the APIs
provided by Qiita [13]. Qiita is a web service where IT engineers
can share useful knowledge, reusable code, and connect with each
other. For example, engineers publishing articles about how to use
new features of ECMA 6 [9]. Figure 4 shows three screenshots of
the QiitaClient application to manage the user login status under
different contexts. Figure 4a shows when the user is not yet log in.
Figure 4b shows when the user has logged in. Both screens show
abstracts of articles as a list. Whereas Figure 4a shows a “login”
button, Figure 4b shows “post” and “MyPage” buttons on the top
respectively. When we click the “MyPage” button, the application
shows the user information (Figure 4c). Listing 9 shows essen-
tial pieces of QiitaClient and an authentication layer that refines
the authenticated behavior. Listing 10 presents the use of ADEjs,
the withLayersZone, in which EventTasks and MicroTasks are used
within the authentication layer.

Listing 9 shows the QiitaClient with two methods generateHeader
and request. The former method synchronously generates HTTP
headers that are required by Qiita APIs, the latter method asyn-
chronously sends a request to the given URL with a GET method.
In this listing, the request invokes generateHeader (Line 6). We refine
the generateHeader of the QiitaClient in which we add an access
token to the HTTP header in order to be authenticated (Line 13).

1 class QiitaApiClient {
2 generateHeader () {return { "Content−Type" : " application / json " } }
3 getName() { return "Guest" ; }
4 request (url) { return fetch (url , {
5 method : "GET" ,
6 headers : se l f . generateHeader () , / / invoke generateHeader
7 }) ; }
8 }
9 const authLayer = layer ("authLayer ") ;

10 authLayer . refineClass (QiitaApiClient , {
11 generateHeader () { return {
12 . . . proceed () ,
13 Authorization :`Bearer $ {ACCESS_TOKEN}` , / / access token
14 } ; } ,
15 getName() { return window. localStrage . getItem ("name") ; }
16 }) ;

Listing 9: Definition of QiitaClient

When a user has been already authenticated, ADEjs activates
authLayer using withLayersZone, then create the “MyPage” button
and adds an event listener, scheduling an EventTask. Addition-
ally, we schedule a MicroTask invoking request, which returns a
CustomPromise. Then we invoke then with an anonymous function
as a callback (Line 9-10 of Listing 10). This anonymous function is

6

Layer Activation Mechanism for Asynchronous Executions in JavaScript COP ’22, June 06–10, 2022, Berlin, Germany

(a) Before login (b) After login (c) MyPage

Figure 4: Screenshots of QiitaClient with different contexts

invoked asynchronously when the MicroTask is completed. Using
withLayersZone, we can correctly show the personal information
when a user clicks the “MyPage” button. If we use the basic use
withLayers function in ContextJS, it is not possible to observe the
user name correctly (“Guest” is shown instead) and obtain the per-
sonal information, as the authentication information in the layer is
not available.

1 if (isAuthenticated) {
2 const mypageButton = createAndaddButton ("MyPage") ;
3 withLayersZone ([authLayer] ,function () {
4 / / schedule EventTask
5 mypageButton . addEventListener (" c l ick " ,function () {
6 const qc = new QiitaClient () ;
7 / / schedule MicroTask
8 qc . request (" / api /v2/ authenticated_user / ")
9 . then (function (prof i le) {

10 / / show personal information
11 renderMypage(qc .getName() , prof i le) ;
12 }) ;
13 }) ;
14 }) ;
15 } else { }

Listing 10: Usage of ADEjs using withLayersZone

6 RELATEDWORK
The work of ADEjs is related to two areas. First, the combination of
COP and event-based programming, considered as different types
of asynchronous models. Second, the management of thread-local
layer (de)activation that encapsulates thread-related information
with the thread similar to Zones.

The combination of an asynchronous model and COP is dis-
cussed in ECaesarJ [22] and JCop [6] as event-based programming.
In these, event handlers are invoked when corresponding events
happen that are generally independent of the main control flow,

considered as another asynchronous model. ECaesarJ supports the
definition of context as a class implementing context entry and
exit functions. ECaesarJ also allows programmers to define com-
positions of contexts and event handlers that may handle context
specific operations. However, ECaesarJ does not provide layer style
compositions of partial methods that will dynamically change the
behavior of a system. JCop provides layers and their compositions in
addition to definitions and compositions of contexts for event-based
layer activation. However, JCop does not consider the connection
between scheduling asynchronous operations and their callbacks.
Therefore, programmers must explicitly (de)activate layers if they
want to use them in scheduling async taskss and their callbacks.

Thread-local layer (de)activation is a feature supported by var-
ious COP languages [3] such as ContextS [11], ContextJ [5], and
Subjective-C [8]. The thread-local concept influenced the design
of Zones [24], which is a predecessor of our research. This work
first considers the connection between scheduling an asynchro-
nous operation and its callback to maintain the consistency of
(de)activating layers across logically-connected asynchronous op-
erations using Zones. On top of this, they extend Dexie.Promise
to provide life-cycle callbacks, and use them to support MicroTask
that uses async/await. Due to using Dexie.Promise, it does not sup-
port all types of asynchronous operation, namely MacroTask and
EventTask. Our approach also maintains the consistency of layers
across all types of logically-connected asynchronous operations
combining Zone.js and our own extension of CustomPromises to
support all kinds of async tasks.

7 CONCLUSION AND FUTUREWORK
In response to the appearance of small and mobile computing de-
vices and systems that dynamically adapt their behavior based on
the surrounding execution environment (e.g., users’ location), COP
provides partial method extensions associated to layers and layer
activation to manage behavior adaptations to the context. Dynamic

7

COP ’22, June 06–10, 2022, Berlin, Germany Fukuda et al.

extent is one of the most used scoping strategies for behavior adap-
tations which limits the extend of a layer to its activation block,
deactivating the layer at the end of the block. The semantics of
dynamic extent implicitly assumes that all operations are executed
synchronously. This assumption is not guaranteed when we use
asynchronous operations that are commonly used for Web devel-
opment using JavaScript. ContextJS is a library that supplies COP
features including dynamic extent using withLayer. Therefore the
execution model of ContextJS does not guarantee the correct behav-
ior when we combine synchronous and asynchronous operations
with layers.

This paper proposes ADEjs, a layer activation mechanism with
scoping strategies that fulfill the three kinds of asynchronous op-
erations in JavaScript using Zones. More precisely, we use Zone.js
and CustomPromise to support MicroTasks, MacroTasks, and Event-
Tasks. ADEjs provides withLayersZone abstraction that ensures all
active layers in an asynchronous call throughout the execution of
its corresponding callback. To validate the feasibility and use of
ADEjs, we implement a smartphone application, QiitaClient, using
withLayersZone.

With ADEjs, programmers can keep layers activate not only
for synchronous operations within a code block but also logically-
connected asynchronous operations and their callbacks without
any manual management of the kinds of operations used. To com-
pliment this, as future work we will evaluate existing issues related
to the scope of layer and compare ADEjs to different kinds of acti-
vation mechanisms auch as implicit layer activation.

Even though we can always keep layers through the execution of
asynchronous calls, it might not be always necessary. For example,
when we add an event handler to a button with a layer (e.g., land-
scape), the event handler should be invoked along with the current
environment (e.g., portrait). This requirement cannot be solved with
ADEjs because the withLayersZone always applies the same layers
that are used when the asynchronous operations are invoked to
execute callbacks. We need to expose adequate mechanisms for
programmers to change the semantics of withLayersZone to adjust
to their requirements.

REFERENCES
[1] Unai Alegre, Juan Carlos Augusto, and Tony Clark. 2016. Engineering context-

aware systems and applications: A survey. Journal of Systems and Software 117
(2016), 55–83. https://doi.org/10.1016/j.jss.2016.02.010

[2]]tasks Angular. [n. d.]. Task lifecycle. https://github.com/angular/zone.js/blob/
master/doc/task.md. Accessed: 2022-05-22.

[3] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. 2009. A Comparison of Context-Oriented Programming Languages. In
International Workshop on Context-Oriented Programming (Genova, Italy) (COP
’09). Association for ComputingMachinery, New York, NY, USA, Article 6, 6 pages.
https://doi.org/10.1145/1562112.1562118

[4] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.
2011. ContextJ: Context-oriented Programming with Java. Information and Media
Technologies 6, 2 (2011), 399–419. https://doi.org/10.11185/imt.6.399

[5] Malte Appeltauer, Robert Hirschfeld, and Hidehiko Masuhara. 2009. Improving
the Development of Context-Dependent Java Applications with ContextJ. In
International Workshop on Context-Oriented Programming (Genova, Italy) (COP
’09). Association for ComputingMachinery, New York, NY, USA, Article 5, 5 pages.
https://doi.org/10.1145/1562112.1562117

[6] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. 2010. Event-Specific Software Composition in Context-
Oriented Programming. In Software Composition, Benoît Baudry and Eric
Wohlstadter (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 50–65.

[7] Robert H. Pascal C. and Oscar N. 2008. Implementing protocols via declarative
event patterns. Journal of Object Technology 7, 3 (2008), 125–151.

[8] Nicolás Cardozo, Sebastián González, Kim Mens, and Theo D’Hondt. 2012. Unit-
ing Global and Local Context Behavior with Context Petri Nets. In International
Workshop on Context-Oriented Programming (COP’12, 3). ACM, New York, NY,
USA, 1 – 6.

[9] ECMA. 2016. ECMAScript 6: A scripting-language specification for JavaScript
- https://www.ecma-international.org/ecma-262/6.0. https://www.ecma-
international.org/ecma-262/6.0 Accessed: 2020-01-20.

[10] Sebastián González, Nicolas Cardozo, Kim Mens, Alfredo Cádiz, Jean-Cristophe
Libbrecht, and Julien Goffaux. 2010. Subjective-C: Bringing Context to Mobile
Platform Programming. In Proceedings of the International Conference on Proceed-
ings of the International Conference on Software Language Engineering (Eindhoven,
The Netherlands) (series-lncs, Vol. 6563), Brian Malloy, Steffen Staab, and Mark
van den Brand (Eds.). Springer, 246 – 265.

[11] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. 2007. An Introduction
to Context-Oriented Programming with ContextS, Vol. 5235. 396–407. https:
//doi.org/10.1007/978-3-540-88643-3_9

[12] Robert Hirschfeld, Hidehiko Masuhara, Atsushi Igarashi, and Tim Felgentreff.
2016. Visibility of Context-oriented Behavior and State in L. Information and
Media Technologies 11 (2016), 11–20. https://doi.org/10.11185/imt.11.11

[13] Qiita Inc. 2014. How developers code is here. https://qiita.com. Accessed:
2022-03-23.

[14] Tetsuo Kamina and Tomoyuki Aotani. 2019. TinyCORP: A Calculus for Context-
Oriented Reactive Programming. In Proceedings of the Workshop on Context-
Oriented Programming (London, United Kingdom) (COP ’19). Association for
ComputingMachinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3340671.
3343356

[15] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2011. EventCJ: A
Context-Oriented Programming Language with Declarative Event-Based Context
Transition. In Proceedings of the Tenth International Conference on Aspect-Oriented
Software Development (Porto de Galinhas, Brazil) (AOSD ’11). Association for
Computing Machinery, New York, NY, USA, 253–264. https://doi.org/10.1145/
1960275.1960305

[16] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2017. Push-Based
Reactive Layer Activation in Context-Oriented Programming. In Proceedings
of the 9th International Workshop on Context-Oriented Programming (Barcelona,
Spain) (COP ’17). Association for Computing Machinery, New York, NY, USA,
17–21. https://doi.org/10.1145/3117802.3117805

[17] Paul Leger and Hiroaki Fukuda. 2017. Sync/CC: Continuations and Aspects to
Tame Callback Dependencies on JavaScript Handlers. In Proceedings of the 32nd
Annual ACM Symposium on Applied Computing (SAC 2017). Marrakech, Morocco,
1245–1250. https://doi.org/10.1145/3019612.3019783

[18] Paul Leger, Hiroaki Fukuda, and Ismael Figueroa. 2021. Continuations and
Aspects to Tame Callback Hell on the Web. Journal of Universal Computer Science
27, 9 (Sept. 2021).

[19] Paul Leger, HidehikoMasuhara, and Ismael Figueroa. 2020. Interfaces for Modular
Reasoning in Context-Oriented Programming. In Proceedings of the 12th Inter-
national Workshop on Context-Oriented Programming and Advanced Modularity
(COP 20). Virtual Event, USA, 1–7. https://doi.org/10.1145/3422584.3423152

[20] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. 2011. An
open implementation for context-oriented layer composition in ContextJS. Sci.
Comput. Program. 76 (12 2011), 1194–1209. https://doi.org/10.1016/j.scico.2010.
11.013

[21] Forbes Lindesay. 2012. Promise: A library for promises in JavaScript. https:
//www.promisejs.org. Accessed: 2022-01-20.

[22] Angel Núñez, Jacques Noyé, and Vaidas Gasiūnas. 2009. Declarative Definition of
Contexts with Polymorphic Events. In InternationalWorkshop on Context-Oriented
Programming (Genova, Italy) (COP ’09). Association for Computing Machinery,
New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/1562112.1562114

[23] Stefan Ramson, Jens Lincke, and Robert Hirschfeld. 2017. The Declarative Nature
of Implicit Layer Activation. In Proceedings of the 9th International Workshop
on Context-Oriented Programming (Barcelona, Spain) (COP ’17). Association for
Computing Machinery, New York, NY, USA, 7–16. https://doi.org/10.1145/
3117802.3117804

[24] Stefan Ramson, Jens Lincke, Harumi Watanabe, and Robert Hirschfeld. 2020.
Zone-Based Layer Activation: Context-Specific Behavior Adaptations across
Logically-Connected Asynchronous Operations. In Proceedings of the 12th Inter-
national Workshop on Context-Oriented Programming and Advanced Modularity
(Virtual, USA) (COP ’20). Association for Computing Machinery, New York, NY,
USA, Article 2, 10 pages. https://doi.org/10.1145/3422584.3422764

[25] Takuo Watanabe. 2018. A Simple Context-Oriented Programming Extension to
an FRP Language for Small-Scale Embedded Systems. In Proceedings of the 10th
International Workshop on Context-Oriented Programming: Advanced Modularity
for Run-Time Composition (Amsterdam, Netherlands) (COP ’18). 23–30. https:
//doi.org/10.1145/3242921.3242925

[26] Zones. 2014. Asynchronous dynamic extents. https://dart.dev/articles/archive/
zones. Accessed: 2022-01-03.

8

https://doi.org/10.1016/j.jss.2016.02.010
https://github.com/angular/zone.js/blob/master/doc/task.md
https://github.com/angular/zone.js/blob/master/doc/task.md
https://doi.org/10.1145/1562112.1562118
https://doi.org/10.11185/imt.6.399
https://doi.org/10.1145/1562112.1562117
https://www.ecma-international.org/ecma-262/6.0
https://www.ecma-international.org/ecma-262/6.0
https://www.ecma-international.org/ecma-262/6.0
https://doi.org/10.1007/978-3-540-88643-3_9
https://doi.org/10.1007/978-3-540-88643-3_9
https://doi.org/10.11185/imt.11.11
https://qiita.com
https://doi.org/10.1145/3340671.3343356
https://doi.org/10.1145/3340671.3343356
https://doi.org/10.1145/1960275.1960305
https://doi.org/10.1145/1960275.1960305
https://doi.org/10.1145/3117802.3117805
https://doi.org/10.1145/3019612.3019783
https://doi.org/10.1145/3422584.3423152
https://doi.org/10.1016/j.scico.2010.11.013
https://doi.org/10.1016/j.scico.2010.11.013
https://www.promisejs.org
https://www.promisejs.org
https://doi.org/10.1145/1562112.1562114
https://doi.org/10.1145/3117802.3117804
https://doi.org/10.1145/3117802.3117804
https://doi.org/10.1145/3422584.3422764
https://doi.org/10.1145/3242921.3242925
https://doi.org/10.1145/3242921.3242925
https://dart.dev/articles/archive/zones
https://dart.dev/articles/archive/zones

	Abstract
	1 Introduction
	2 COP and Asynchronous operations in JavaScript
	2.1 COP in a Nutshell
	2.2 Asynchronous Operations in JavaScript
	2.3 COP Problems with Asynchronous Tasks

	3 ContextJS and Zones
	3.1 Layer Activation Mechanism
	3.2 Zones

	4 ADEjs: Async Dynamic Extent for JavaScript
	4.1 Store and Restore Layers
	4.2 Zone libraries
	4.3 Detecting Asynchronous Operation and Callbacks

	5 Validation
	6 Related work
	7 Conclusion and Future work
	References

