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ABSTRACT
Program verification is a tool for the development of software that
is free from defects and satisfies its functional specification. It suf-
fers from two issues that have already been addressed in the field of
type systems. First, it has a rigid focus on full-program verification.
Also, it provides weak support for “partial” verification, relying
on unproven lemmas that may lead to unsound runtime behavior.
These issues are also present in Dafny, a verification-first program-
ming language with full support for expressive pre-conditions and
post-conditions that must be verified statically. Inspired by recent
research on the field of gradual program verification in the Coq
proof assistant, in this paper we present a first proposal for progres-
sive verification in Dafny by presenting a minimal proof-of-concept
implementation. Progressive verification means that programmers
can use a new keyword to specify post-conditions that are assumed
to be true during verification, but that will be tested at runtime
by automatically-generated checks. We argue that our approach
is correct by construction, by relying on the architecture of Dafny
itself, and we also discuss several issues regarding the threats to the
proposed approach as well as perspectives for further development.
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1 INTRODUCTION
The specification, implementation and verification of correct soft-
ware is part of the never-ending labor of software engineering. In
essence, there are two main tasks [2]: specification, which amounts
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to declare what it means for the software to be correct, and veri-
fication, where we must decide whether a given implementation
satisfies the specification. In the field of programming languages, and
more specifically in the context of language-based verification [29],
we find that type systems [24] and deductive program verification
(DPV) [14] are designed as systems that use source-level annota-
tions to specify correctness properties, which are then checked by
decision procedures based on expressive logical systems.

On one hand, deductive program verification asserts the func-
tional correctness by means of pre- and post-conditions expressed
in a program logic, where source-code entities are bound to logi-
cal specifications. Then, the logical entailment of those conditions
results in the formal proof that the implementation satisfies the
specification. Nevertheless, despite its usefullness, DPV still suffers
from two issues that are mostly solved in the field of type systems:

• Current approaches to DPV are too rigid, focusing mostly on
full-program verification [29]. This requires a binary choice
between the upfront development, specification and verifica-
tion of a whole program, which is indeed a costly thing to do,
or the almost complete lack of specification and verification.
• In cases that support “partial” verifications, this is usually
done by relying on unproven axioms or lemmas—assumed
to always hold—but that may easily introduce unsound be-
havior at runtime.

These issues reflect the traditional, conservative, but also puni-
tive approach to sound verification. Indeed, users must be extra
careful when using any kind of escape mechanism, and must re-
sort to external reasoning to re-establish theoretical confidence in
their implementation. On the other hand, although type systems
have faced similar issues to those described above, the active re-
search on gradual typing [30] has been quite succesful in managing
the tension between conservative static guarantees and optimistic
assumptions that are checked as runtime assertions. Indeed, re-
cently Tanter and Tabareau [35] devised a simple mechanism for
gradual certification in the Coq proof assistant [36], whereby un-
proven but decidable axioms are translated into runtime checks
upon program extraction.

Based on the developments within the field of type systems, and
inspired by Tanter and Tabareau [35], in this paper we propose a
mechanism for progressive verification of programs in the context of
the Dafny [20] language. Similar to [35], in our work we introduce
a new assures specification to specify executable post-conditions,
similar to those in E-ACSL [11], that must be verified at runtime, but
that can be used for static reasoning during program verification.
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Tomake ourwork tangiblewe have chosen to extend theDafny [20]
programming language with assures, in order to test the practi-
cal consequences of our approach.1 Overall, we believe this is a
non-trivial research and development challenge given that:
• Dafny supports several programming features not inmedi-
ately present in Coq: imperative and mutable state, classes,
objects, references, among others.
• In constrast to Coq, which has explicit support for specify-
ing decidable properties, in Dafny we need a syntax-based
approach that guarantees that a logical formula can be trans-
lated into a corresponding runtime check.

Consequently, our proposal introduces the idea of progressive
program verification in a practical verification-aware programming
language. We use the term progressive—instead of gradual—because
the latter has a specific technical meaning in the state of the art [3,
31], which does not correspond to the approach presented here.

We also want to remark that choosing Dafny was not arbitrary:
Dafny provides a complete environment for programming and ver-
ification, with a special focus on making verification accessible to
programmers and students [21]. We share this lofty goal and we
envision the introduction of progressive verification as a way to
further ease the introduction of program verification to program-
mers. This paper reports our current progress towards progressive
verification in Dafny, making the following specific contributions:
• Proposes the concept of progressive verification inspired by
developments in the field of gradual typing and verification.
• Presents aminimal proof-of-concept implementation inDafny,
where post-conditions can bemarked as dynamically-checked
by using the assures keyword.
• Presents an argument and perspective about the challenges
for establishing the formal correctness of the approach, as
well as an in-depth discussion of the limitations, threats to va-
lidity and perspectives for the development of the approach.

The rest of this paper is as follows: we first present a brief back-
ground on the core concepts of deductive program verification
(Section 2) to then present our contribution by means of exam-
ples in Dafny itself (Section 3). Afterwards, we present a thecnical
overview (Section 4), to then present a discussion regarding cor-
rectness and other open questions and issues (Sections 5 and 6).
Finally, we relate our work to the relevant state-of-the-art (Sec-
tion 7) and conclude with a discussion about current and future
work (Section 8).

2 DEDUCTIVE PROGRAM VERIFICATION
Software quality is a crucial and desirable property of software,
not only from the academic point of view, but also from an eco-
nomic standpoint [32]. While there are many approaches to soft-
ware quality, such as processes and methodologies [26, 34] and
test-based approaches [16, 23], in this paper we focus on the field of
language-based software verification (LBSV) [2, 29]. Further-
more, we focus on two definitions of quality: functional correctness
and freedom from defects. The former refers to a system that indeed
does what it is supposed to do, by means of a formal specification;

1Implementation and benchmarks available at: http://zeus.inf.ucv.cl/~ifigueroa/doku.
php/research/progressive-verification-dafny

the latter asserts that the software will not present defects such as
unexpected program crashes, information leaks, or similar defects.

The essential characteristic of LBSV is that the source code of
the programs is used as the mathematical object under study.
Hence, the source code itself is used to provide formal proof or
evidence that the software indeed completely avoids certain kinds
of errors. This is in contrast to other formal techniques, such as,
for instance, model checking. Within LBSV we found several disci-
plines such as type systems, static or dynamic contracts, as well as
deductive program verification. This paper focuses on the latter.

Deductive Program Verification (DVP) [14, 20] is the process of
stating program functional correctness as a set of logical statements
that are then proved, with as much automation as possible. As a
language-based approach to program verification, DPV relies on
program annotations that bind specific language constructs and
expressions to their logical specifications. Such annotations may
be implemented not only through special comments on the source
code, as in ACSL [6], JML [1], but also as in Dafny where it is an
ingrained part of the programming language itself [20].

The expressive power of DPV lies on the program logics involved
in the specification of the source code constructs, which determine
the kind of reasoning and the extent of properties that can be proven.
The modern approach is to use separation logics [2], which allows
developers to specify and reason about variables, objects, pointers,
mutable data-structures, and other entities used in most impera-
tive and object-oriented languages. Separation logics requires the
annotation of pre-conditions and post-conditions bound to a given
command or instruction. Preconditions must hold before executing
the instruction, whereas the correct execution of the instruction
must fulfill the post-conditions. Hence, a verified program is that in
which it is possible to demonstrate the logical entailment of all pre-
and post-conditions, for all the sequential commands in a program.
Separation logics also allows developers to reason about memory
locations in the conditions, the command, and the rest of the heap.

The logical formulas allowed into the conditions—hence the
expressive power of DPV—are determined by a fragment of first-
order logic alongside logical theories for supporting reasoning about
bitvectors, arrays, arithmetic, and other models relevant to comput-
ing. In general, reasoning is automated using a Satisfiability Modulo
Theory solver [5]—SMT solver for short—which is a specialized soft-
ware for checking satisfiability of logical formulas in the context of
a set of given theories. The general processing pipeline of DPV is
composed of at least the following three steps:

(1) Parsing and Type Checking: the standard stages of a com-
piler, where an abstract syntax tree (AST) is parsed from
source code, and is typechecked according to the rules of the
actual programming language. Most notably, specification
formulas are checked, as they must have boolean type.

(2) Verification: the typed AST is inspected and all the specifi-
cations, that is the pre- and post-conditions, are collected as
a set of verification conditions that must be satisfied. The set
of verification conditions is given to a SMT solver. This step
is successful when all conditions are satisfied.

(3) Translation/Execution: after successful verification the
typed AST is translated for its eventual execution. The trans-
lation may be into machine code, another language such as

http://zeus.inf.ucv.cl/~ifigueroa/doku.php/research/progressive-verification-dafny
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method Find(a: array<int>, key: int)
returns (index: int)
requires a != null
ensures index == -1

==> forall k :: 0 <= k < a.Length
==> a[k] != key

ensures index >= 0 && index < a.Length
==> a[index] == key

{
// ... user-defined code,
// which might fulfill the specification

}

Figure 1: Specification of Find in terms of pre-conditions and
post-conditions, using requires and ensures respectively.
During compilation Dafny will try to verify that the imple-
mentation actually fulfills the specification.

method Find(a: array<int>, key: int)
returns (index: int)
requires a != null
ensures index == -1 ==> ...
ensures index >= 0 && index < a.Length ==> ...
{

var i := 0;
while i < a.Length {

if a[i] == v {
return i;

}
i := i+1;

}
return -1;

}

Figure 2: Implementation of linear search, without verifica-
tion hints. This code does not compile as Dafny is not able
to deduce that the postconditions actually hold.

a C or even C#, or to virtual machine bytecode, for instance
for the LLVM or JVM. In general, type and verification in-
formation is erased for performance reasons, hence it is not
available at runtime.

3 PROGRESSIVE VERIFICATION BY
EXAMPLE

Dafny [20] is an imperative, sequential, class-based programming
language with first-class support for the specification of safety
and functional correctness properties. Its specification language
features: pre- and post-conditions, heap assertions, and reasoning
about program termination. In its implementation, Dafny closely
follows the aforementioned DPV pipeline (Section 2): after pars-
ing and typechecking, the compiler extracts a set of verification
conditions stated in the Boogie [4] intermediate verification lan-
guage. These conditions are then solved using Microsoft’s Z3 SMT
solver [10]. Regarding execution, Dafny programs are compiled

method Find(a: array<int>, key: int)
returns (index: int)
requires a != null
ensures index == -1 ==> ...
ensures index >= 0 && index < a.Length ==> ...
{

var i := 0;
while i < a.Length
invariant 0 <= i <= a.Length
invariant forall k :: 0 <= k < i

==> a[k] != v
{

if a[i] == v {
return i;

}
i := i+1;

}
return -1;

}

Figure 3: Implementation of linear search that correctly uses
loop invariants to show that the post-conditions hold.

method Find(a: array<int>, key: int)
returns (index: int)
requires a != null
assures index == -1 ==> ...
assures index >= 0 && index < a.Length ==> ...
{

var i := 0;
while i < a.Length {
if a[i] == v {

return i;
}
i := i+1;

}
return -1;

}

Figure 4: Implementation of linear search using progressive
verification with the assures keyword. This code compiles
and can be composed with existing methods.

into the C# language, which enables the interoperation of verified
modules with other elements in the .NET platform.

As our running example, let us consider the code fragment in Fig-
ure 1, adapted from the Dafny tutorial [28]. The code is annotated
using the proper Dafny constructs. Notice the use of the standard re-
quires and ensures keywords to specify pre- and post-conditions
respectively. The given specification requires the array to be valid,
i.e. not null, whereas the post-conditions consider two mutually-
exclusive scenarios:

(1) The value is not found and the method returns -1. In
this case, the method ensures that none of the elements in
the array is equal to the value being searched.
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(2) The value is found and the method returns the index
value. In this case, the method ensures that index is within
valid bounds, considering the length of the array, and that
element a[index] actually holds the value being searched.

As usually taught in first year programming courses, linear
search is the most straightforward implementation for method
Find. Now let us consider the almost-classic implementation in Fig-
ure 2 that any aspiring programmer should be able to produce.
Unfortunately, even though we intuitively know that this imple-
mentation is actually correct—which it is—Dafny is still unable to
automatically derive this just from the source code.2 At this point
programmers who are not expert in the field of verification may find
that the only “solution” is to discard the post-conditions altogether,
losing all the benefits of function contracts.

On the other hand, motivated programmers should learn more
about how to verify their algorithms in Dafny, which could eventu-
ally lead them to the correct implementation, shown in Figure 3.

We see that in terms of line of code the difference is minimal,
however the time and effort required from the programmer might
be considerable. We also see that there is no middle ground: either
we fully specify and correctly implement—with all verification hints
and tricks—or we give up on the use of function contracts altogether.
Here is where our approach to progressive verification comes in
handy. From a programmer’s point view, progressive verification
enables one to use the assures keyword to defer the check to
runtime, as shown in Figure 4.

4 TECHNICAL OVERVIEW
We now provide a general overview of the technical aspects in the
current state of our implementation. We first describe the process-
ing pipeline of Dafny, making references to the essential classes
involved in our work. Then we outline the specific changes required
for the current implementation of assures.

Dafny Processing Pipeline. Upon invoking the Dafny compiler,
the DafnyDriver class controls the processing of all involved files.
First, it parses and checks all the command line arguments, and it
also performs some sanity checks on the file names. As a result, a
files variable contains the paths to all (valid) files involved in the
build. In the second step, the DafnyMain.Parsemethod is called to
perform the parsing and typechecking steps. When this is success-
ful, a variable dafnyProgram holds the internal representation of
the code. This variable is an instance of Dafny.Program, which in
turns relies on the parser and scanner that are automatically gener-
ated from the Dafny.atg file; this file is written in the syntax of the
Coco/R compiler generator [15]. The next step is verification, by
invoking the DafnyDriver.Boogie helper method that manages
the translation and execution of the SMT solving phase through
the Boogie intermediate language. Finally, in the compilation step,
dafnyProgram is translated into a C# program by following a stan-
dard inductive algorithm on the structure of the syntax tree.

2In order to focus on our actual contribution, we work on an archived version of Dafny
2.0.0.00922, as it provides a static target for our efforts. Current improvements may
actually be able to prove this particular method, nevertheless the example serves to
illustrate our point.

method _Find__ass_(x: array<int>, v: int)
returns (y: int)
requires x != null
decreases x, v

{
var i := 0;
while i < x.Length
decreases x.Length - i

{
if x[i] == v {

return i;
}
i := i + 1;

}
return -1;

}

method Find(x: array<int>, v: int) returns (y: int)
requires x != null
decreases x, v

{
y := _Find__ass_(x, v);

}

Figure 5: Simple method wrapping for methods using as-
sures. The original source code goes into the hiddenmethod
_Find__ass, which is invoked by the newly facade method
Find. On compilation, we generate the runtime checks after
the invocation of _Find_ass_.

Implementation of assures. In general terms, implementing a
new feature in the specification language is a hugely crosscutting
task. It requires changes at the syntax level, at the program AST
representation level, and then at the semantic level. Fortunately,
given the solid design of the Dafny implementation, so far we only
had to modify 4 source files/classes:
• Dafny.atg: for adding the assures keyword to the syntax.
This generates the proper parser and scanner files.
• Dafny.Program: for adding an internal representation in
whichmethods contain a collection of assured post-conditions.
For now this just replicates what is already done for post-
conditions defined with ensures.
• Dafny.Resolver:contains the code for semantic checking,
e.g. typechecking and other additional checks. Here we only
check that assures expressions must be of boolean type,
again mimicking what was already the case for ensures
expressions.
• Dafny.Compiler: here wemodify the translation of methods
with assures post-conditions, in order to include runtime
checks for each of them.

Our approach consists in a simple form of method wrapping,
in which the parser generates a normalized shell method in which
runtime checks are generated during compilation time. In Figure 5
we show how this process works for the code in Figure 4.

We borrow our implementation strategy from E-ACSL [11],
hence the source method Find generates two new methods. First,
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public static void @Find(
BigInteger[] @x
BigInteger @v,
out BigInteger @y)

{
@y = BigInteger.Zero;
TAIL_CALL_START: ;
BigInteger _out0;
@__default.@__Find____ass__(@x, @v, out _out0);
@y = _out0;
// POSTCONDITION CHECK HERE
if(! (!((@y).@Equals(/* condition check */)))) {
System.Console.Write("Postcondition failed");

}
if(! (!(((@y) >= (new BigInteger(0))) &&
((@y) < (new BigInteger((@x).@Length)))) ||
(((@x)[(int)(@y)]).@Equals(@v)))) {
System.Console.Write("Postcondition failed");

}
}

Figure 6: Simplified extract of the C# code generated after
compiling from Dafny sources. The code includes the call
to the hidden _Find__ass method as well as the actual run-
time checks generated from the post-conditions. For space
reasonswe omit the long condition check in the first if state-
ment.

the hidden method _Find__ass_ with the original implementation
from the source code. Then, a new Find method, used as a facade
that simply invokes _Find__ass_. This method is instrumented
upon compilation, as shown in Figure 6. Its structure is always the
same: an invocation to the hidden method, whose values are return
in as many variables as necessary. We keep the names of return
variables, because they must in scope for the generated runtime
checks. The parsing and checking stage already checks the naming
of post-conditions to avoid scenarios with incorrect scoping.

5 TOWARDS CORRECTNESS OF
PROGRESSIVE VERIFICATION

After showing the motivation and illustrative examples for progres-
sive verification, we now present a discussion on the crucial issue of
formal correctness. First we describe how verification correctness
is established in standard, i.e. non-progressive, Dafny programs.
As we explain below, we argue this is obtained by a correct-by-
construction approach. Then, we present an argument about how
the correctness of progressive Dafny programs is obtained, which
depends on the correct translation of the logical specifications in-
side the assures clauses.

Correctness of standard Dafny programs. In a standard Dafny
program, correctness is established by the following:

• A type-checked and valid Dafny program is transformed
into a program in the Boogie specification language.

• The Boogie program is sent for the verification to the SMT
solver, which extracts and tries to demonstrate a set of vali-
dation constraints.
• Upon successful verification, the Dafny program is compiled
into the C# target language, erasing all verification-related
information, such as ghost variables and other constructs.

Hence, the correctness of the standard verification of Dafny
programs relies on the following:

(1) The translation from Dafny to Boogie must be sound. All
Dafny programs must be expressable as Boogie programs,
and all verification conditions must be equivalent in the
target Boogie program.

(2) The extraction of verification constraints and its verification
must be equivalent to the verification of the conditions in
the Dafny source file.

(3) The compilation from Dafny to C# also must be sound; it
should not introduce additional operations that may affect
the verifications already performed.

To the best of our effort, we have not managed to find a formal-
ized core calculus for Dafny that formally defines these correctness
properties. Indeed, the seminal papers that describe Dafny [20, 21]
directly refer to the implemented language and its application. De-
spite this situation, we hold to the hypothesis that Dafny is correct
by construction, and by extensive testing, although the implemen-
tation itself is not formalized yet.

Correctness of progressive Dafny programs. Considering all of
the above, the question is how we can guarantee the correctness of
progressive verification in Dafny, at least up to the same confidence
attained for standard Dafny programs. Based on the current state
of our work, we present the following argument for the correctness
of our approach:

• Regarding the validity of progressive Dafny programs, all
assures expressions are constructed in the AST in the same
way as the ensures expressions are. This includes the syn-
tactical validity, as well as the correct typechecking of the
specifications as boolean expressions.
• The translation from Dafny to Boogie is left unmodified,
thus we are not introducing any errors or incorrect behav-
iors that may affect the correctness of verification. In prin-
ciple, the parser should introduce axioms for each assured
post-condition, which would also be fed to the verifier and
would allow static reasoning based on unverified assump-
tions. We are working currently in this point. This and other
limitations are discussed in Section 6.
• The compilation from Dafny to C# is mostly left unmodified.
Our changes only come into play on the compilation of
methods that have one or more assures expressions: here
we use an internal method of Dafny itself to translate the
boolean specifications into executable runtime checks.

Correctness of executable specifications. Following this argu-
ment, the most crucial step is the compilation of boolean expres-
sions into runtime checks. There are two important problems that
must be addressed:
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(1) Can the logical specification be translated into a boolean
source-level expression?

(2) Is it possible to actually execute the translated boolean ex-
pression in a manner equivalent to the logical specification?

This is exactly the problem of the correctness of executable
specifications, such as those presented in E-ACSL. Indeed, we take
the approach of E-ACSL to solve both problems. For the first issue
we observe that the specification-level language is equivalent to
the boolean source-level language. This comes from the fact that
in the Dafny implementation all specifications must be correctly
typed as boolean expressions in order for the program to be valid,
and these boolean expressions are written in the same syntax of all
other parts of the program.

The second issue is a bit more complex. For instance, let us
consider the assured expression of the Find method (Figure 4):

index == -1 ==>
forall k :: 0 <= k < a.Length ==> a[k] != key

Intuitively, this can be checked at runtime by executing the follow-
ing code fragment:

bool b = (index == -1);
for(int k = 0; k <= a.Length; k++) {

b = b && a[k] != key;
} // now b holds the result of this check

However, executions like these are not possible for unbounded
integer ranges, nor for any range of float numbers, due to the
inability to enumerate them. For instance, the following expressions
are logically true, but are not executable:

// k has no upper bound, execution would never finish
forall k :: 1 < k ==> k*k > k
// cannot enumerate range of float numbers
forall x :: 0.0 <= x < 1.0 ==> x*x < x

Guarded specification expressions. Following E-ACSL [11], we
specify a restricted subset of logical expressions that can always
be translated into executable boolean expressions. We term them
as guarded specification expressions (GSE). GSEs are inductively
defined on the syntax of the language itself as follows:

• Any expression without quantification is a GSE if all its
sub-expressions are also GSE.
• An expression with universal quantification is a GSE if and
only if the quantifier is guarded.
• A universal quantifier is guarded if and only if it involves a
bounded integer range. Such a range is one that is syntacti-
cally equal to an expression such as lb < ... < ub or such
as ub > ... > lb, where ub and lb are respectively the
upper and lower bounds. The dots denote any number of
integer values or variables that are chained in the expression.
• For now we do not support existential quantification, but
the same restrictions regarding bounded ranges apply.

We advocate for the correctness of our approach by exploiting
the correctness of Dafny itself in addition to the correct specifica-
tion of executable specifications, which follows from the inductive
translation of formulas to executable code, under the restriction of
guarded quantification.

6 DISCUSSION
We now discuss several issues about progressive verification, the
current limitations of our implementation, what are the threats to
the validity of the approach, as well as several perspectives and
open issues that are yet to be resolved in future work.

Limitations of the current implementation. Our current imple-
mentation serves as a minimal proof-of-concept that introduces the
ideas behind progressive verification in Dafny. A first limitation
is that assures is only supported for post-conditions in function
contracts, when it could also be introduced in other places such as
invariant declarations, or even function pre-conditions. Another
point which we are addressing currently is the introduction of the
assured conditions as unproven lemmas or axioms for the Boogie
program created in the verification step. This is crucial because
it enables the integration of assured expressions in the realm of
the static verification reasoning. We also do not support the use of
predicates or lemmas in the body of the assured post-conditions,
although they are mechanisms that enable the modular specifica-
tion of programs. As a consequence of these limitations, we are
not yet able to translate the whole Dafny test suite for the proper
performance evaluation of assures. Nevertheless, although we rec-
ognize that our results are very preliminar, we consider that the
core of the proposal is faithfully reflected in this paper, and that the
aforementioned limitations do not pose any fundamental challenge
beyond the engineering work required to implement them.

Threats to validity. There are important threats to the validity of
progressive verification that must be properly addressed in upcom-
ing work. The main issue is how to establish the formal correctness
of the approach. As outlined before in Section 5, we rely on the
correct implementation of Dafny itself. However this is not neces-
sarily sufficient, as there is a need for a proper formalization and
certification of the correctness of the system. This in itself is quite
a challenge, because, in constrast to the previous work in Coq [35],
which uses Coq itself for the certification, we must investigate the
proper theoretical approach for an object-oriented language with
verification such as Dafny. Other threats to validity arise from the
potential adoption of progressive verification by developers. For
instance, it is known that industry is moving towards the use of
optional types, e.g. as in Dart [9] or MyPy [19], which do not incur
any costs for runtime verification. In contrast, the performance of
gradual typing and related approaches is a real concern for practical
adoption. Yet another threat is whether the cost of learning how
to verify programs in standard Dafny is high enough to justify the
hybrid approach presented in this work.

Perspectives and Open Issues. There are several open issues that
must be addressed during the development of progressive verifica-
tion. A first issue is deciding whether the use of assures must be
left to the programmer, or if it is more conveniente to work towards
the development of some adaptive verification system that, based
on the set of verification constraints that could not be statically
proven, generates the necessary runtime checks. This is a very
attractive option that opens interesting challenges in the field of
SMT-based constraint verification. An additional problem is how to
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assess the expresiveness of the restricted specification language for
the executable conditions. Although we took the same approach
as in E-ACSL, there could be room for improvements that allow
for sound approximations for instance for unbounded ranges, or
for dealing with float values. Another issue is related to the perfor-
mance penalties that can be incurred due to the runtime checks,
and whether or not we should allow for those checks to be turned
off during production builds of the software, because the software
can potentially run into unsound behavior that was not addressed
by static verification. Indeed, it is interesting to determine how
progressive verification can serve as a pay-as-you-go mechanism to
balance the tradeoff between verification effort, performance, and
developer satisfaction. Finally, another interesting issue is how to
evaluate the impact of progressive verification in terms other than
runtime performance such as, for instance, programmer adoption,
quality, quantity and complexity of the code written with and with-
out progressive verification, and other qualitative factors regarding
developer productivity. Given that our main motivation is to make
program verification accessible to a broader group of developers,
we must empirically study and address these concerns.

7 RELATEDWORK
There is a vast literature on program verification and the variety
of techniques used for this purpose. We now we briefly overview
several related developments that influence our work, and that we
consider relevant to correctly contextualize our contributions.

Gradual typing. The idea of graduality arised in the seminal work
of Siek and Taha [30], where the authors introduce the dynamic
type “?”. During typechecking, this type may correspond to any
arbitrary and consistent type. Consistency is a relation for finding
plausible types that could replace “?” to form a statically-typed
program. The main philosophy of gradual typing is subsumed by
the motto trust but verify, meaning that programs that might be
correct at runtime are not rejected by the typechecker. Instead, the
compiler inserts runtime checks to ensure the safe execution of the
code. Although there is a performance tradeoff, due to the intro-
duction of runtime checks, the impact should only be proportional
to the usage of the dynamic type “?”.

Gradual Certified Programming. Based on gradual typing, Tan-
ter and Tabareau [35] proposed a mechanism for Gradual Certified
Programming in Coq. Coq [36] is a widely-used proof assistant,
based on a highly expressive functional programming language fea-
turing dependent types [25], which are used both for programming
and for proving. In addition, Coq has program extraction features,
in which a certified program is translated into OCaml. Then, the
core idea of gradual certified programming is to enable developers
to introduce conjectures in the proofs. A conjecture is a decidable
property that is not yet proven, but will be assumed to be true,
in order to construct formal proofs. Being decidable, they can be
transformed into runtime checks upon extraction.

Java Modelling Languages. Although our work is inspired in
part by the executable conditions present in E-ACSL, the semi-
nal work on modelling and specification languages is due to the

Java-based modelling languages such as JML [1], JCML [33] and
AspectJML [27]. Indeed, JML is cited as the main inspiration of the
ACSL specification language [6] itself. These modelling languages
define a formal syntax for the specification of function contracts,
through special comments that can be parsed and analyzed along-
side the original source code. AspectJML uses the paradigm of
aspect-oriented programming [17] to further modularize the imple-
mentation or realization of the contract mechanisms.

ACSL and Executable ACSL. ACSL [6] is a specification language
for the C programming language that is heavily inspired by the
design of JML. Like JML, ACSL is a formal language for the specifi-
cation of function contracts. Due to the nature of the C language,
ACSL allows developers to write specification for low-level fea-
tures, such as memory accesses, as well as higher-level behavior
such as return values or rich conditions for data structures such
as linked lists. ACSL is a central part of Frama-C [8]: a rich and
extensible framework for the analysis of C programs. The E-ACSL
language is a subset of ACSL that introduces a set of restrictions
to make the specifications executable. In practice this requires the
use of guarded quantification when using ∀ and ∃ quantifiers in the
specification formulas. Guarded quantification requires bounded
and well-defined intervals for integer ranges, which can then be
translated into C code. The complete specification of E-ACSL is
more complex as it also introduces a memory monitoring system,
and an automatic translator to C, which our work currently does
not address. To the best of our knowledge, although E-ACSL could
be used for a progressive verification mechanism as shown in our
work, we are not aware of any systematic effort to do so. Indeed,
a key difference between ACSL and Dafny is that, as stated in its
website, “ACSL allows you to write complete specifications. But it
does not force you to”, while Dafny is stricter about this.

Design by Contract. The Design-by-Contract methodology [22]
was introduced in the context of the Eiffel language. The notion of
a contract, which is commonly understood nowadays, consists in
the specification of pre-conditions and post-conditions, as well as
code invariants. Eiffel features dynamic verification of contracts,
which can be turned off to avoid the performance impact of the
dynamic checks. Compared to Eiffel, Dafny features a mechanism
for static contracts, powered by the SMT-solving machinery, but
the specification of conditions is quite reminiscent, if not the same,
as in Eiffel and many other languages with contract mechanisms.

EmbeddedContracts. Embedded Contracts [13] is another language-
based approach for the specification of contracts, that uses the
programming language itself as the means to write the contract
specifications. Overall, this enables the reuse of all the infrastruc-
ture regarding IDEs and tools around the language to be used also
for the support of contracts. In [13] these embedded contracts are
extracted and transformed into runtime checks, even though they
discuss potential strategies for static checking of contracts. What
we do is quite similar, by extracting the annotated postconditions
and turning them into a runtime check. However one difference in
our approach is that the post-condition is also meant to be available
to the SMT solver for static verification reasoning.
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Gradual Refinement Types. Refinement types [7, 37] are an ex-
tension of type theory that decorates basic types with logical pred-
icates that can be collected and verified by an SMT-solver. As an
extension of refinement types [18] defined gradual refinement types,
allowing the use of gradual formulas with incomplete information
that must be checked at runtime. Our work is not directly related to
gradual refinement types, as we have only implemented a dynamic
post-condition checking.

Gradual Program Verification. Influenced by the developments
in gradual typing research, [3] defines a formal proposal for gradual
program verification. In their context, gradual verification also
includes the notion of incomplete formulas, which are optimistically
filled with plausible and verifiable facts, whose checking is deferred
at runtime. In contrast to this work, we do not consider yet the
idea of imprecise formulas. Finally, although this work is deeply
theoretical in nature, we believe it is also an important reference
for setting the direction of future work.

8 CONCLUSIONS AND FUTUREWORK
Borrowing from recent developments in the fields of gradual typ-
ing and gradual program verification we present a first approach
towards what we call progressive verification in the context of the
Dafny language. The core idea is to make program verification more
accesible to programmers trained in the traditional imperative and
object-oriented languages such as a Java or C#. This is done by
introducing the assures keyword that allows developers to specify
post-conditions that are assumed to be true, and thus can be used
for static verification reasoning, but that will be checked at runtime.
Although the idea in itself is not novel in itself, we believe there
is a gap to be filled: the need for a practical, accesible platform for
developers with all levels of expertise in program verification.
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