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ABSTRACT
Static analyses, as points-to analysis, are useful to determine and

assure different properties about a program, such as security or type

safety. While existing analyses are effective in programs restricted

to static features, precision declines in the presence of dynamic lan-

guage features, and even further when the system behavior changes

dynamically. As a consequence, improved points-to sets algorithms

taking into account such language features and uses are required.

In this paper, we present and extension of the point-to sets analysis

to incorporate the language abstractions introduced by context-

oriented programming adding the capability for programs to adapt

their behavior dynamically to the system’s execution context. To

do this, we extend WALA to detect the context-oriented language

abstractions, and their representation within the system, to capture

the dynamic behavior, in the particular case of the Context Traits

JavaScript language extension. To prove the effectiveness of our ex-

tension, we evaluate the precision of the points-to set analysis with

respect to the state of the art, over four context-oriented programs

taken from the literature.
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1 INTRODUCTION
Points-to analysis computes the set of possible values that can be

referenced by a pointer throughout a program’s execution [12]. Ef-

fective and precise computation of points-to sets has proven useful

in application domains such as security [8] or type checking [4].

There are different techniques for computing precise and scalable

points-to analysis for a variety of languages (e.g., Java, C, and C++),
but the results depend on the specific language capabilities.

While it is possible to compute the points-to analysis for Object-

oriented and imperative languages, analyzing languages with dy-

namic properties precisely is more challenging (Section 2). More-

over, many of the existing techniques are tailored to object systems,

leaving out other modularity types that may be present in a lan-

guage. JavaScript, for example, has dynamic capabilities and a flexi-

ble object model [9], such as run-time object construction, dynamic

property access, dynamic script evaluation, and variable parameter

lists. Computing points-to analysis in the presence of such dynamic

features is challenging. There is little work in points-to analyses

for JavaScript programs embracing all its dynamic capabilities [12].

New programming paradigms, like Context-oriented program-

ming (COP) [6, 11], present new modularity features that are not

normally conceived in existing points-to analyses. The case of COP

is of particular interest given that it enables the capacity to dy-

namically change the behavior of a program based on its execution

context. COP can drive the development of adaptive systems, which

are the base of smart environments and Internet of Things (IoT) sys-

tems. These two characteristics highlight the need for appropriate

techniques to analyze dynamic systems using different modularity

approaches. Therefore, we identify two challenges for point-to anal-

ysis for COP: (1) imprecision for languages with dynamic capabili-

ties, and (2) lack of support for advanced modularity mechanisms.

The purpose of this work is to improve the results of the points-to

set analysis for JavaScript-based systems with dynamic characteris-

tics. In particular, the points-to analysis presented here constitutes

the first static analysis for COP (Section 3). To narrow down the

problem, we implement an analyzer for a specific implementation

of COP for JavaScript: Context Traits [5, 3]. The importance of this

work is that the points-to analysis can in turn be used as input for

other analyses like type checking [2], or completeness [19].

In Context Traits, adaptations occur in response to contexts

(de)activation, triggering dynamic trait composition. Snippet 1

shows a COP program extract managing the behavior of a mo-

bile phone according to the state of its battery (i.e., the context). In
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1 Phone = Trait ({
2 initialize: function () {
3 this.number = +57 601 2133927;
4 this.gps = ...
5 } });
6

7 BatterySaver = Trait ({
8 this.unavailableFeatures = [];
9 restrictFeatures: function () {
10 delete this.gps;
11 this.unavailableFeatures.push("gps");
12 } })
13

14 LowBattery = new cop.Context ();
15 LowBattery.adapt(Phone , BatterySaver);
16

17 if(BatteryManager.EXTRA_LEVEL > threshold) {
18 LowBattery.activate ();
19 Phone.restrictFeatures ();
20 } else
21 LowBattery.deactivate ();

Snippet 1: COP mobile phone in Context Traits

this example, depending on the battery level (Line 17), the phone

may present different features like the new unavailableFeatures and

absence of the gps properties. The problem that arises from adapting

the behavior is that different parts of a program (independent to

specific snippets) may be oblivious to property changes.

Current points-to analyses are not equipped with the capacity to

detect the different implementations of a function or the dynamicity

of objects’ properties, leading to poor precision and wrong conclu-

sions about function prerequisites. Extending point-to analysis to

account for the dynamic features of COP can be useful to effectively

analyze such programs, detecting bugs or vulnerabilities.

We validate the precision of our extension of point-to analysis

through the comparison with the state-of-the-art over different

applications gathered from the COP literature (Section 4).

2 BACKGROUND
This section presents an overview of existing techniques used for

points-to analysis, as the base of the approach used in our work.

Points-to analysis is a family of static analyses, which is used

to approximate a set of possible targets (called points-to set) for

each pointer in a program. There are many variations of points-to

analysis [12], with additional techniques to improve precision in

exchange for used resources and vice-versa. Snippet 2 shows a pro-

gram example in Java-like syntax used to illustrate the differences

between multiple points-to analyses.

1 Object first(Object o1,Object o2){ return o1; }
2 Object second(Object o1,Object o2){ return first(o2,o1)

;}
3 void f() {
4 Object o1 = new Object ();
5 Object o2 = new Object ();
6 Object o3 = first(o1, o2);
7 Object o4 = first(o2, o1);
8 Object o5 = second(o1, o2);
9 Object o6 = second(o2, o1);
10 }

Snippet 2: Example program to calculate points-to sets

The points-to sets, pts(function/object), with a perfect precision

for the program in Snippet 2 are as follows, where the labels (

instance 1) and (instance 2) differentiate object allocations:

pts(f/o1) = {new Object() (instance 1)}
pts(f/o2) = {new Object() (instance 2)}
pts(f/o3) = {new Object() (instance 1)}
pts(f/o4) = {new Object() (instance 2)}
pts(f/o5) = {new Object() (instance 2)}
pts(f/o6) = {new Object() (instance 1)}
pts(first/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o2) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o2) = {new Object() (instance 1), new Object() (instance 2)}

Subset-based and unification-based analysis. The subset-based
points-to analysis solves necessary subset constraints [1]. Subset

constraints on two points-to sets A and B are of the form "A is a

subset of B". Unification-based analyses use equality constraints on

points-to sets [14]. The unification-based analysis unifies points-to

sets (in an assignment instruction), while subset-based analyses

introduce a subset-constraint. The unification approach is more

imprecise than the subset approach, in exchange of performance.

The context-insensitive subset-based points-to sets are:

pts(f/o1) = {new Object() (instance 1)}
pts(f/o2) = {new Object() (instance 2)}
pts(f/o3) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o4) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o5) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o6) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o2) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o2) = {new Object() (instance 1), new Object() (instance 2)}

Each method is analyzed only once in a context-insensitive anal-

ysis, so the analysis concludes that the return of the first function

could point to both object instances. This results in the points-to

sets for o3, o4, o5, and o6 containing two instances.

pts(f/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o2) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o3) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o4) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o5) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o6) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o2) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o2) = {new Object() (instance 1), new Object() (instance 2)}

As we can see above, the context-insensitive unification-based

points-to sets analysis concludes that every variable can point to

both object instances, as o1 unifies with o2 through the firstmethod,

and then unified with the rest of the variables through f.

Context Sensitivity. This is used to improve analysis precision

by analyzing a method multiple times depending on how it is in-

voked. Since the same method can have different behavior in each

invocation, a context-sensitive analysis can produce different re-

sults for each invocation, thus potentially improving the analysis’

precision. There are many ways to implement context sensitivity,

all with different precision and performance because it depends on

the selected context abstraction.

A parallel implementation [15] to compute a reachability-based

context-sensitive flow-sensitive points-to analysis uses data shar-

ing and query scheduling for parallel graph traversals; allowing a

significant improvement over sequential approaches. Li et al. [7]

present an approach for improving the performance of context-

sensitive points-to analysis without sacrificing too much precision.

The authors achieve this by identifying precision-critical meth-

ods and apply context sensitivity only to those methods. Wei et al.

[17] design a points-to analysis that applies different kinds of con-

text sensitivity to different sections of a JavaScript program. Their
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approach first computes a points-to analysis to identify character-

istics of all the present functions, and then decides which context

sensitivity technique to apply for each function.

Call-site context-sensitive analyses use the call site in which a

method is called as an abstract context [12]. Different invocations

of a method can have the same call site, so it is possible to store the

call site of the analyzed method, and the call site of the caller, up to

an invocation chain of depth 𝑘 . This is known as k-call-site context

sensitivity, or k-CFA. The k-CFA for our example program is:

pts(f/o1) = {new Object() (instance 1)}
pts(f/o2) = {new Object() (instance 2)}
pts(f/o3) = {new Object() (instance 1)}
pts(f/o4) = {new Object() (instance 2)}
pts(f/o5) = {new Object() (instance 1), new Object() (instance 2)}
pts(f/o6) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(first/o2) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o1) = {new Object() (instance 1), new Object() (instance 2)}
pts(second/o2) = {new Object() (instance 1), new Object() (instance 2)}

In this case, o3 and o4 point to a single instance each. For Lines

6 and 7 of the example, the method first is analyzed separately

for each instruction, since the call site is different. However, the

points-to sets for o5 and o6 still have both object instances due to

the call to the first method through the second method. This result

in two different calls to the first method with the same call site.

This imprecision can be fixed using a bigger 𝑘 . With 𝑘 = 2, we

reach perfect precision of the points-to sets.

Object sensitivity is a popular choice when analyzing object-

oriented programming languages, using the allocation site of the

receiver object as a context [12]. The use of only the allocation site

of the receiver makes the analysis more imprecise as the number

of abstraction layers increases in the program. To solve this, the

context can also have information about the allocation site of its

caller’s receiver (with depth k) in k-object sensitivity.

Flow Sensitivity. A flow-sensitive analysis is capable of taking

into account statements’ order, and branching. A flow-sensitive

analysis produces more precise results than a flow-insensitive one,

but has an additional overhead, since it needs to store different

points-to sets for different program locations, incurring in greater

space complexity [1]. Partial flow sensitivity is an alternative to

full flow sensitivity that provides the scalability of flow-insensitive

analyses while maintaining most of the precision benefits of flow

sensitivity by reducing the control-flow graph, given that there

are non-critical nodes in the original control-flow graph [10]. Sui

et al. [16] present a scalable flow-sensitive points-to analysis for

multithreaded C programs. They perform multiple thread infer-

ence analysis and sparse analysis. Their solution is highly scalable,

presenting a significant improvement in terms of execution speed

compared to other analyses. Partial flow-sensitive, context-sensitive

points-to algorithms [18] track object property updates more accu-

rately. To achieve this, a obj-ref state is used as the variable type at

specified execution points, thus a new type of object sensitivity.

3 POINTS-TO ANALYSIS FOR COP
Dynamic language features, such as dynamic property access, make

programs more difficult to analyze precisely [12]. Therefore, many

analyzers avoid dynamic language features by taking a subset of the

language. Still, there is relevant work to accurately analyze certain

language features. For example, correlation tracking accurately

analyzes the correlated dynamic property access coding pattern for

JavaScript programs [13].

We now present our extension of the points-to sets to account for

the capabilities of COP. Our work extends the basic field-sensitive

correlation tracking WALA
1
analysis to improve precision without

sacrificing performance, taking into account COP abstractions and

the dynamic properties of JavaScript.

Our implementation first finds adaptation tuples in the form

⟨𝑐𝑜𝑛𝑡𝑒𝑥𝑡 − 𝑡𝑟𝑎𝑖𝑡 − 𝑜𝑏 𝑗𝑒𝑐𝑡⟩ for each Context.adapt(object,Trait) in-

struction in the program to keep track of context and trait instan-

tiations. Second, we insert code for every instruction related to

adaptations and context activation. The inserted code corresponds

to a basic model of the behavior for these instructions.

3.1 Adaptation and Activation Finder
First, we gather information about the COP abstractions in the

source code –that is, trait and context creation, and calls to the

methods adapt and activate. For each new trait instance, we store

its name (if it is assigned to a variable), the caller method, the first

argument of the constructor, and the source code position where

the instantiation occurs. For context creation, we store the context

name, under the assumption that every context instance is stored

in a variable. For adapt method calls, we store the context, the trait,

the object being adapted, the caller method, and the source position

of the instruction. Finally, for activate method calls, we store the

context, the caller method and the source position.

3.2 Code Insertion
Having identified the COP abstractions, we now search for code

fragments including adaptations and activations, and replace them

with new generated instruction sets that model the behavior of the

original instructions. To do this, we replace nodes in the generated

AST (before the analysis) representing the original instructions

with new nodes representing the inserted code.

Trait instantiation. Consider the phone example in Snippet 1,

which contains two trait instances, BaseBehavior and BatterySaver. For

each trait instance, we modified its AST node by adding a new obj

property. This is necessary to access the parameter object passed

to the trait constructor, giving us access to the object even if an

activation is outside the scope of the call site in which the trait

creation occurs. The new property opens up access whenever a

context is activated to adapt an object. For the trait object modifi-

cation, we must ensure that no other modifications use the same

property name. Snippet 3 shows the result of the code insertion

creating the obj parameter for each trait (Lines 3 and 6).

1 o1 = { initialize: function () { ... } };
2 Phone = Trait(o1);
3 Phone.obj = o1;
4 o2 = { restrictFeatures: function () { ... } };
5 BatterySaver = Trait(o2);
6 BatterySaver.obj = o2;

Snippet 3: Code insertion for trait creation

Trait instantiations may also occur in the return statement of a

function (not being stored in a variable). For such cases, the trait is

1
WAtson Libraries for Analysis (WALA): http://wala.sourceforge.net
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stored in a temporary variable in order to write the obj property, to

then return the complete trait. Snippet 4 shows the resulting code

for trait instantiation in the return statement. Note the precision of

this approach depends on the type of context sensitivity used. In

Snippet 4 the fields of the object depend on the function parameter.

If context sensitivity is used, the function will be analyzed for each

possible parameter, resulting in the points-to sets of the object fields

being of size one.

function makeTrait(msg) {
var _obj1 = { getMsg: function () { return msg; } };
var _trait1 = Trait(_obj1);
_trait1.obj = _obj1;
return _trait1;

}

Snippet 4: Code insertion for trait creation in return
statement

Adaptations. The second type of instruction inserts code into the

adapt function invocations for a context. In this case, we enhance

adaptations with two additional properties, following the same

idea as before. These properties are used to access the behavior

upon context activation. Given that a context can have multiple

adaptations, the property name that we insert is numbered for

each adaptation. For example, the Phone object can be extended

with two behavioral variations: BatterySaver, and Emergency.
The adaptations LowBattery.adapt(Phone, BatterySaver) and LowBattery

.adapt(Phone, Emergency) result in the objects in Snippet 5, containing

both, the adapted object (obj), and the trait (trait) properties.

LowBattery.adaptation1 = {
obj: Phone ,
trait: BatterySaver

}
LowBattery.adaptation2 = {

obj: Phone ,
trait: Emergency

}

Snippet 5: Code insertion for adaptations

Activations. For context activation method calls, we insert the

properties of the object passed as a parameter into the adapted

object. This is just a basic model of what happens when a context

is activated. Note that this model is still imprecise when multi-

ple contexts are active at once, but still effective in capturing the

different function implementations. Consider the context activa-

tions HighBattery.activate(), and LowBattery.activate(). The resulting

inserted code is in Snippet 6. In this case we wrap correlated pairs

(obj, trait) inside a function called for each property [13].

for(var prop1 in HighBattery.adaptation1.trait.obj) {
(function (prop) {

HighBattery.adaptation1.obj[prop] = HighBattery.
adaptation1.trait.obj[prop] })(prop1); }

for(var prop1 in LowBattery.adaptation1.trait.obj) {
(function (prop) {

LowBattery.adaptation1.obj[prop] = LowBattery.
adaptation1.trait.obj[prop] })(prop1); }

for(var prop2 in LowBattery.adaptation2.trait.obj) { ...
}

Snippet 6: Code insertion for activations with correlated
property accesses

3.3 Implementation
We extend the WALA field-sensitive analysis for JavaScript. WALA

is a Java framework for the statically analysis of Java bytecode and

JavaScript files. The core of WALA was initially implemented to

analyze Java, but then extended with a JavaScript front-end. An

advantage of usingWALA is that we can reuse the model for certain

JavaScript constructs. In order to extend the existing analysis, we

create a CAstRewriter that receives the results of the adaptation and

activation finder to rewrite sections of the generated AST prior to

the analysis. We use Rhino to parse JavaScript, as it is the recom-

mended parser for JavaScript in WALA. The analysis takes place at

the Intermediate Representation (IR) level, in SSA form.

3.3.1 Adaptation and activation finder. In the IR, adaptations corre-

spond to method calls represented by JavaScriptInvoke instructions

with two arguments where the method’s object is a context. After

identifying adaptation instructions, we store the trait, the adapted

object, and the method as an Adaptation object. Activations are iden-

tified as JavaScriptInvoke instructions named "activate" with no ar-

guments, and where the method’s object is a context. Activations

are stored in an Activation object.

3.3.2 Code Insertion. To insert code in certain AST nodes within

the WALA framework, we implement a CAST Rewriter. Our im-

plementation takes the information given by the adaptation and

activation finder to find which AST nodes need to be replaced.

When copying nodes from one AST to another, trait instantiation,

adaptation, or activation nodes are replaced for new nodes with

the appropriate information. To find which nodes will be replaced

by the CAST Rewriter, we pattern match over the source position

of each instruction. For example, adaptation nodes correspond to

instructions in which the source position of the node is equal to the

source position of the adaptation instruction, and the node follows

a structure with type CALL and 5 sub-nodes (Figure 1b).

Nodes’ source position alone is not enough to identify the cor-

rect node type (i.e., trait instantiation, adaptation, or activation
instructions), since the father node could also have the same source

position. Therefore, we use hash maps to save the relations between

a node and the instruction type it represents.

Trait instantiation. Figure 1a shows the AST node to represent

traits, and Figure 1d the corresponding new node with the inserted

trait reference. Note that we just replace the call to the Trait con-

structor and not the whole assignment. The reason for this is that

trait creation can occur without an assignment (e.g., it could be

the return of a function). For that reason, it is necessary to create

variables to store both the created trait and the adapter object. The

names for the new variables must differ for each trait instantiation,

to ensure each variable points to a single object. Finally, the node

<obj> is stored and copied in the new AST. The <obj> node can be a

variable or a new object; either way the result is unaffected.

Adaptation. The AST for adaptation message calls is shown in

Figure 1b. This node is replaced by the node in Figure 1e. For

adaptations, we match the node pattern in Figure 1b and check if

the position of the AST node and the adaptation call are the same.

The method name is verified by the adaptation finder, while calls to

other functions in the same source code line would have different
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CALL
  VAR:“Trait”
  “do”
  VAR:“_WALA_int3rnal_global”
  <obj>

(a)

CALL
  “adapt”
  “dispatch”
  <context>
  <obj>
  <trait>

(b)

CALL
  “activate”
  “dispatch”
  <context>

(c)

BLOCK_EXPR
  ASSIGN
    VAR:“_obj1”
    <obj>
  ASSIGN
    VAR:“_trait1”
    CALL
      VAR:“Trait”
      “do”
      VAR:“_WALA_int3rnal_global”
      VAR:“_obj1”
  ASSIGN
    OBJECT_REF
      VAR:“_trait1”
      “obj”
    VAR:“_obj1”
  VAR:“_trait1”

(d)

ASSIGN  
  OBJECT_REF
    <context>
    “_adaptation1”
  OBJECT_LITERAL
    CALL
      VAR:“Object”
      “ctor”
    “trait”
    <trait>
    “obj”
    <obj>

(e)

SCOP
  BLOCK
  DECL_STMT
    “for in loop temp”
    VAR:“$$undefined”
  ASSIGN  
    VAR:“for in loop temp”
    OBJECT_REF
      OBJECT_REF
        OBJECT_REF
          <context>
          “_adaptation1”
        “trait”
      “obj”
  BLOCK
    LABEL_STMT
      “contLabel”
      EMPTY
    EMPTY
  LOOP
    …

(f)
Figure 1: IR AST replacement for the trait instantiation, adaptation, and activation COP instructions

positions (same line but different offsets). The new node contains a

copy of the <context>, <obj>, and <trait> nodes, with the additional

references to the corresponding objects.

Activation. Activation nodes’ pattern is shown in Figure 1c. For

each adaptation, the activated context node is replaced by the struc-

ture in Figure 1f. Replacing activation nodes requires more work

than trait instantiation or adaptations.

The information about the adaptations to trigger is gathered by

the adaptation and activation finder. We use a block statement to

group all the adaptations to be applied. In this case we copy only the

context variable name to the new node. As mentioned before, we

can assume the context to activate is stored in a variable. Otherwise,

there would not be any adaptation to apply.

Note that beyond single node modifications to the AST, we need

to add new control flow edges to the graph. The first thing we need

to do is add edges to the node EXCEPTION_TO_EXIT (i.e., a node that

represents ending the execution due to an exception, specific to

WALA) for each VAR, CALL, OBJECT_REF, and EACH_ELEMENT_GET node. We

also add edges for the anonymous functions that are called for each

adaptation when a context is activated.

4 EVALUATION
This section evaluates our points-to analysis for dynamic language

features together with COP language abstractions. In particular,

we evaluate the precision of our approach with respect to exist-

ing points-to analysis for JavaScript programs and the algorithms’

performance.

4.1 Experimental Design
We compare our analysis with the standard field-sensitive WALA

analysis for JavaScript. We evaluate our implementation on four

COP programs
2
gathered from the literature (representative of COP

interactions): (A.1) a basic multi-language hello-world program,

2
Code examples are available at: https://github.com/FLAGlab/AdaptiveSystemAnalysis

(A.2) a shape area and perimeter calculator, (A.3) a video encoder,

and (A.4) a course management system. These programs are used as

examples of the different Context Traits functionalities. As system

metrics, we take into account the number of nodes and edges of the

call-graph, the preprocessing time (adaptation and activation finder,

and AST rewriter), and the analysis time (call-graph and points-to

sets computation). We choose small examples for the evaluation

to assess the precision of our approach, manually inspecting the

generated points-to sets for given variables and fields.

4.2 Precision Analysis
We now proceed to evaluate the precision of our implementation.

Due to space restrictions, we only discuss in detail the results for

the greetings.js (A.1) program in Snippet 7, but similar analysis and

results apply to the other programs.

1 Person = { greetings : function (){ return "Hello!"; }};
2

3 Spanish = new cop.Context ();
4 SpanishSpeaking = Trait ({
5 greetings: function () { return "Hola!"; }
6 });
7

8 French = new cop.Context ();
9 FrenchSpeaking = Trait ({
10 greetings: function () { return "Bonjour!"; }
11 });
12

13 Spanish.adapt(Person , SpanishSpeaking);
14 French.adapt(Person , FrenchSpeaking);
15

16 var result = Person.greetings ();
17 Spanish.activate ();
18 result = Person.greetings ();
19 French.activate ();
20 result = Person.greetings ();

Snippet 7: greetings.js example program

The greetings.js program has a Person object (Line 1) with a base

implementation of the greetings function. There are two adaptations

for Person that modify the implementation of the greetings function.

Let us calculate the points-to set for the result variable in Line 16.
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pts(result) = {"Hello!"} pts(result) = {"Hello!", "Hola!", "Bonjour!}

pts(Person.greetings) = 
{<JSFunction 
greetings.js@61:greetings>}

pts(Person.greetings) = {<JSFunction 
greetings.js@61:greetings>,
    <JSFunction greetings.js@167:greetings>,
    <JSFunction greetings.js@273:greetings>}

(a) (b)

Figure 2: Results of the points-to sets for the greetings example

Figure 2 shows how our implementation (b) is able to compute

the complete points-to set for all possible values of the result vari-

able. A similar situation occurs calculating the points-to set for

the greetings field of the Person variable, where only one call site is

detected by the baseline (WALA) (a) analysis, while all three call

sites are detected using our approach.

Given that the baseline analysis can miss specific call sites when

calculating the points-to sets for a variable, we calculate the recall

of the points-to set algorithms, for different variables in each of

the programs. Table 1 shows the baseline’s and our approach’s

results. Note that our algorithm is effective in identifying all possible

(context) values for variables in most cases. For the cases with low

precision, it is as good as the baseline in identifying the call sites.

Table 1: Results of the points-to sets for the greetings example
Program variable instances TP FN Recall

baseline ours baseline ours baseline ours

A.1

result 3 1 3 2 0 0.33 1
greetings 3 1 3 2 0 0.33 1

A.2

area 3 1 2 1 0 0.50 1
sides 3 1 3 2 0 0.33 1

A.3 received_msg 3 1 1 2 2 0.33 0.33

A.4

marks 1 0 1 1 0 0 1
i4[0] 1 0 0 1 1 0 0

o1.course 2 1 2 1 0 0.50 1

The imprecision of our approach for programs A.3 and A.4 is due

to the specific implementation of the variables. In the first case, we

fail to identify the proceed calls, and therefore, miss possible values.

In the second case, our algorithm detects different possible values

coming from adaptations, as different possible instances of a value.

4.3 Performance Analysis
We now evaluate the performance of our solution with respect to

existing point-to analyses. The performance experiments were exe-

cuted using a PC with an AMD Ryzen 5 3500U, with base frequency

of 2.10 GHz, and 8 GB 2400 MHz RAM.

The top part of Table 2 shows the measurements of all four

programs using the baselineWALA analysis. The bottom part shows

the measurements using our analysis.

Comparing the baseline analysis with our implementation, the

first thing to note is that the size of the callgraphs are always slightly

bigger. One reason for this is that the callgraphs of our implemen-

tation include the functions that could be adapted into an object

when a context is active. To illustrate this, the method greetings

in Snippet 7 can have 3 possible implementations depending on

which context is activated. Our approach can conclude that this

method has those 3 implementations, resulting in 4 more nodes

and edges in the callgraph (2 for the extra implementations and

2 for the functions for correlated pairs inserted when a context is

activated). Note that the preprocessing time is higher for our ap-

proach compared to the baseline, due to the overhead of computing

Table 2: Performance results (in ms) of the four programs
Program No. of nodes No. of edges Preprocessing Analysis Total time

b
a
s
e
l
i
n
e

A.1 116 115 665 ± 25.4 398 ± 10.4 1063

A.2 125 124 688 ± 10.7 391 ± 34.1 1079
A.3 115 114 647 ± 20.4 372 ± 26.5 1019
A.4 150 149 688 ± 13.6 436 ± 26.7 1124

o
u
r
s

A.1 120 119 727 ± 29.9 321 ± 25.3 1048
A.2 131 130 791 ± 37.2 367 ± 17.4 1158

A.3 119 118 751 ± 35.8 316 ± 18.4 1067

A.4 159 158 857 ± 35.8 383 ± 12.6 1240

possible adaptations and activations. Nonetheless, the analysis time

is lower, making the total time about the same for the baseline and

our implementation.

While our implementation over-approximates the points-to sets,

it has a better precision than the other analyses, at a compara-

ble performance. We observe how this improvement in precision

can be beneficial for further analyses (e.g., type checking). Our

implementation still has sources of imprecision as not all COP ca-

pabilities are included. Still, the implemented analysis can be useful

for COP developers, as for example when reasoning about the types

or interfaces of behavior variations.

5 CONCLUSION AND FUTUREWORK
This work is motivated by the imprecision and bad performance

of state-of-the-art analyses (e.g., context-sensitive flow-sensitive)
in the presence of dynamic language features, or new language

abstractions, as in the case of COP. Moreover, imprecise and un-

sound results can lead to further errors in type checking and bug

detection analyses. Our work presents an extension to the points-

to analysis to improve the points-to sets precision. Our solution

extends the standard field-sensitive WALA analysis for JavaScript,

that statically models some of the COP capabilities, realized in the

specific case of Context Traits.

The proposed analysis is defined in two phases. First, we im-

plement the adaptation and activation finder, which analyzes the

source code in search of trait instantiations, adaptations, and con-

text activations. Second we use a code insertion algorithm to use

the information gathered by the adaptation and activation finder

to rewrite nodes representing COP features in the program’s AST

with a new proposed model for each feature. The resulting AST is

then analyzed using the standard JavaScript WALA analysis. Our

extension gives us better precision for basic programs, and a good

performance in all cases. However, the precision results for more

complex programs did not improve significantly due to the use of

context-traits instructions not yet covered by the analysis. While

the evaluation can extend to more complex programs, the examples

used represent many of the interactions existing in COP. Therefore,

we can conclude our results show the promise and impact this type

of analysis can have for COP programs (e.g., in type checking).

The work on analysis of COP systems can be extended to lift

our proposal as an analysis framework for modular and adaptive

software systems in the following three directions. (1) We can

extend the coverage of COP abstractions as to improve the precision

of more complex programs. (2) Use flow-sensitivity to take into

account the order in which context activations/deactivations take

place. (3) Extend the analysis further to offer results about the

completeness of execution traces upon context changes.
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